MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Unicode version

Theorem efgmval 15037
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
Assertion
Ref Expression
efgmval  |-  ( ( A  e.  I  /\  B  e.  2o )  ->  ( A M B )  =  <. A , 
( 1o  \  B
) >. )
Distinct variable group:    y, z, I
Allowed substitution hints:    A( y, z)    B( y, z)    M( y, z)

Proof of Theorem efgmval
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3812 . 2  |-  ( a  =  A  ->  <. a ,  ( 1o  \ 
b ) >.  =  <. A ,  ( 1o  \ 
b ) >. )
2 difeq2 3301 . . 3  |-  ( b  =  B  ->  ( 1o  \  b )  =  ( 1o  \  B
) )
32opeq2d 3819 . 2  |-  ( b  =  B  ->  <. A , 
( 1o  \  b
) >.  =  <. A , 
( 1o  \  B
) >. )
4 efgmval.m . . 3  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
5 opeq1 3812 . . . 4  |-  ( y  =  a  ->  <. y ,  ( 1o  \ 
z ) >.  =  <. a ,  ( 1o  \ 
z ) >. )
6 difeq2 3301 . . . . 5  |-  ( z  =  b  ->  ( 1o  \  z )  =  ( 1o  \  b
) )
76opeq2d 3819 . . . 4  |-  ( z  =  b  ->  <. a ,  ( 1o  \ 
z ) >.  =  <. a ,  ( 1o  \ 
b ) >. )
85, 7cbvmpt2v 5942 . . 3  |-  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  =  ( a  e.  I ,  b  e.  2o  |->  <. a ,  ( 1o  \  b )
>. )
94, 8eqtri 2316 . 2  |-  M  =  ( a  e.  I ,  b  e.  2o  |->  <. a ,  ( 1o 
\  b ) >.
)
10 opex 4253 . 2  |-  <. A , 
( 1o  \  B
) >.  e.  _V
111, 3, 9, 10ovmpt2 5999 1  |-  ( ( A  e.  I  /\  B  e.  2o )  ->  ( A M B )  =  <. A , 
( 1o  \  B
) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    \ cdif 3162   <.cop 3656  (class class class)co 5874    e. cmpt2 5876   1oc1o 6488   2oc2o 6489
This theorem is referenced by:  efgmnvl  15039  efgval2  15049  vrgpinv  15094  frgpuptinv  15096  frgpuplem  15097  frgpnabllem1  15177
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879
  Copyright terms: Public domain W3C validator