Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Structured version   Unicode version

Theorem efgmval 15336
 Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m
Assertion
Ref Expression
efgmval
Distinct variable group:   ,,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem efgmval
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3976 . 2
2 difeq2 3451 . . 3
32opeq2d 3983 . 2
4 efgmval.m . . 3
5 opeq1 3976 . . . 4
6 difeq2 3451 . . . . 5
76opeq2d 3983 . . . 4
85, 7cbvmpt2v 6144 . . 3
94, 8eqtri 2455 . 2
10 opex 4419 . 2
111, 3, 9, 10ovmpt2 6201 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725   cdif 3309  cop 3809  (class class class)co 6073   cmpt2 6075  c1o 6709  c2o 6710 This theorem is referenced by:  efgmnvl  15338  efgval2  15348  vrgpinv  15393  frgpuptinv  15395  frgpuplem  15396  frgpnabllem1  15476 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078
 Copyright terms: Public domain W3C validator