MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred Unicode version

Theorem efgred 15073
Description: The reduced word that forms the base of the sequence in efgsval 15056 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgred  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S  /\  ( S `  A )  =  ( S `  B ) )  ->  ( A `  0 )  =  ( B `  0
) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)

Proof of Theorem efgred
Dummy variables  a 
b  c  d  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 fviss 5596 . . . . . . . 8  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
31, 2eqsstri 3221 . . . . . . 7  |-  W  C_ Word  ( I  X.  2o )
4 efgval.r . . . . . . . . . . 11  |-  .~  =  ( ~FG  `  I )
5 efgval2.m . . . . . . . . . . 11  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
6 efgval2.t . . . . . . . . . . 11  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
7 efgred.d . . . . . . . . . . 11  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
8 efgred.s . . . . . . . . . . 11  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
91, 4, 5, 6, 7, 8efgsf 15054 . . . . . . . . . 10  |-  S : { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) } --> W
109fdmi 5410 . . . . . . . . . . 11  |-  dom  S  =  { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) }
1110feq2i 5400 . . . . . . . . . 10  |-  ( S : dom  S --> W  <->  S : { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) } --> W )
129, 11mpbir 200 . . . . . . . . 9  |-  S : dom  S --> W
1312ffvelrni 5680 . . . . . . . 8  |-  ( A  e.  dom  S  -> 
( S `  A
)  e.  W )
1413adantr 451 . . . . . . 7  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( S `  A )  e.  W
)
153, 14sseldi 3191 . . . . . 6  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( S `  A )  e. Word  (
I  X.  2o ) )
16 lencl 11437 . . . . . 6  |-  ( ( S `  A )  e. Word  ( I  X.  2o )  ->  ( # `  ( S `  A
) )  e.  NN0 )
1715, 16syl 15 . . . . 5  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( # `  ( S `  A )
)  e.  NN0 )
18 peano2nn0 10020 . . . . 5  |-  ( (
# `  ( S `  A ) )  e. 
NN0  ->  ( ( # `  ( S `  A
) )  +  1 )  e.  NN0 )
1917, 18syl 15 . . . 4  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( # `
 ( S `  A ) )  +  1 )  e.  NN0 )
20 breq2 4043 . . . . . . 7  |-  ( c  =  0  ->  (
( # `  ( S `
 a ) )  <  c  <->  ( # `  ( S `  a )
)  <  0 ) )
2120imbi1d 308 . . . . . 6  |-  ( c  =  0  ->  (
( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  a
) )  <  0  ->  ( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) ) ) )
22212ralbidv 2598 . . . . 5  |-  ( c  =  0  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  0  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
23 breq2 4043 . . . . . . 7  |-  ( c  =  i  ->  (
( # `  ( S `
 a ) )  <  c  <->  ( # `  ( S `  a )
)  <  i )
)
2423imbi1d 308 . . . . . 6  |-  ( c  =  i  ->  (
( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  a
) )  <  i  ->  ( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) ) ) )
25242ralbidv 2598 . . . . 5  |-  ( c  =  i  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
26 breq2 4043 . . . . . . 7  |-  ( c  =  ( i  +  1 )  ->  (
( # `  ( S `
 a ) )  <  c  <->  ( # `  ( S `  a )
)  <  ( i  +  1 ) ) )
2726imbi1d 308 . . . . . 6  |-  ( c  =  ( i  +  1 )  ->  (
( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  a
) )  <  (
i  +  1 )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) ) )
28272ralbidv 2598 . . . . 5  |-  ( c  =  ( i  +  1 )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) ) ) )
29 breq2 4043 . . . . . . 7  |-  ( c  =  ( ( # `  ( S `  A
) )  +  1 )  ->  ( ( # `
 ( S `  a ) )  < 
c  <->  ( # `  ( S `  a )
)  <  ( ( # `
 ( S `  A ) )  +  1 ) ) )
3029imbi1d 308 . . . . . 6  |-  ( c  =  ( ( # `  ( S `  A
) )  +  1 )  ->  ( (
( # `  ( S `
 a ) )  <  c  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  a
) )  <  (
( # `  ( S `
 A ) )  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) ) ) )
31302ralbidv 2598 . . . . 5  |-  ( c  =  ( ( # `  ( S `  A
) )  +  1 )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( ( # `
 ( S `  A ) )  +  1 )  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
3212ffvelrni 5680 . . . . . . . . . . 11  |-  ( a  e.  dom  S  -> 
( S `  a
)  e.  W )
333, 32sseldi 3191 . . . . . . . . . 10  |-  ( a  e.  dom  S  -> 
( S `  a
)  e. Word  ( I  X.  2o ) )
34 lencl 11437 . . . . . . . . . 10  |-  ( ( S `  a )  e. Word  ( I  X.  2o )  ->  ( # `  ( S `  a
) )  e.  NN0 )
3533, 34syl 15 . . . . . . . . 9  |-  ( a  e.  dom  S  -> 
( # `  ( S `
 a ) )  e.  NN0 )
36 nn0nlt0 10008 . . . . . . . . 9  |-  ( (
# `  ( S `  a ) )  e. 
NN0  ->  -.  ( # `  ( S `  a )
)  <  0 )
3735, 36syl 15 . . . . . . . 8  |-  ( a  e.  dom  S  ->  -.  ( # `  ( S `  a )
)  <  0 )
3837pm2.21d 98 . . . . . . 7  |-  ( a  e.  dom  S  -> 
( ( # `  ( S `  a )
)  <  0  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) )
3938adantr 451 . . . . . 6  |-  ( ( a  e.  dom  S  /\  b  e.  dom  S )  ->  ( ( # `
 ( S `  a ) )  <  0  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
4039rgen2a 2622 . . . . 5  |-  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  <  0  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )
41 simpl1 958 . . . . . . . . . . . . . 14  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
42 simpl3l 1010 . . . . . . . . . . . . . . 15  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  ( # `
 ( S `  c ) )  =  i )
43 breq2 4043 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  ( S `  c ) )  =  i  ->  ( ( # `
 ( S `  a ) )  < 
( # `  ( S `
 c ) )  <-> 
( # `  ( S `
 a ) )  <  i ) )
4443imbi1d 308 . . . . . . . . . . . . . . . 16  |-  ( (
# `  ( S `  c ) )  =  i  ->  ( (
( # `  ( S `
 a ) )  <  ( # `  ( S `  c )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  <-> 
( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
45442ralbidv 2598 . . . . . . . . . . . . . . 15  |-  ( (
# `  ( S `  c ) )  =  i  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  c )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
4642, 45syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  c )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
4741, 46mpbird 223 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( # `  ( S `
 c ) )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) )
48 simpl2l 1008 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  c  e.  dom  S )
49 simpl2r 1009 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  d  e.  dom  S )
50 simpl3r 1011 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  ( S `  c )  =  ( S `  d ) )
51 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  -.  ( c `  0
)  =  ( d `
 0 ) )
521, 4, 5, 6, 7, 8, 47, 48, 49, 50, 51efgredlem 15072 . . . . . . . . . . . 12  |-  -.  (
( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )
53 iman 413 . . . . . . . . . . . 12  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  ->  ( c ` 
0 )  =  ( d `  0 ) )  <->  -.  ( ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( c  e.  dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c
) )  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `  0
)  =  ( d `
 0 ) ) )
5452, 53mpbir 200 . . . . . . . . . . 11  |-  ( ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( c  e.  dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c
) )  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  ->  (
c `  0 )  =  ( d ` 
0 ) )
55543expia 1153 . . . . . . . . . 10  |-  ( ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( c  e.  dom  S  /\  d  e.  dom  S ) )  ->  ( (
( # `  ( S `
 c ) )  =  i  /\  ( S `  c )  =  ( S `  d ) )  -> 
( c `  0
)  =  ( d `
 0 ) ) )
5655exp3a 425 . . . . . . . . 9  |-  ( ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( c  e.  dom  S  /\  d  e.  dom  S ) )  ->  ( ( # `
 ( S `  c ) )  =  i  ->  ( ( S `  c )  =  ( S `  d )  ->  (
c `  0 )  =  ( d ` 
0 ) ) ) )
5756ralrimivva 2648 . . . . . . . 8  |-  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  A. c  e.  dom  S A. d  e.  dom  S ( (
# `  ( S `  c ) )  =  i  ->  ( ( S `  c )  =  ( S `  d )  ->  (
c `  0 )  =  ( d ` 
0 ) ) ) )
58 fveq2 5541 . . . . . . . . . . . 12  |-  ( c  =  a  ->  ( S `  c )  =  ( S `  a ) )
5958fveq2d 5545 . . . . . . . . . . 11  |-  ( c  =  a  ->  ( # `
 ( S `  c ) )  =  ( # `  ( S `  a )
) )
6059eqeq1d 2304 . . . . . . . . . 10  |-  ( c  =  a  ->  (
( # `  ( S `
 c ) )  =  i  <->  ( # `  ( S `  a )
)  =  i ) )
6158eqeq1d 2304 . . . . . . . . . . 11  |-  ( c  =  a  ->  (
( S `  c
)  =  ( S `
 d )  <->  ( S `  a )  =  ( S `  d ) ) )
62 fveq1 5540 . . . . . . . . . . . 12  |-  ( c  =  a  ->  (
c `  0 )  =  ( a ` 
0 ) )
6362eqeq1d 2304 . . . . . . . . . . 11  |-  ( c  =  a  ->  (
( c `  0
)  =  ( d `
 0 )  <->  ( a `  0 )  =  ( d `  0
) ) )
6461, 63imbi12d 311 . . . . . . . . . 10  |-  ( c  =  a  ->  (
( ( S `  c )  =  ( S `  d )  ->  ( c ` 
0 )  =  ( d `  0 ) )  <->  ( ( S `
 a )  =  ( S `  d
)  ->  ( a `  0 )  =  ( d `  0
) ) ) )
6560, 64imbi12d 311 . . . . . . . . 9  |-  ( c  =  a  ->  (
( ( # `  ( S `  c )
)  =  i  -> 
( ( S `  c )  =  ( S `  d )  ->  ( c ` 
0 )  =  ( d `  0 ) ) )  <->  ( ( # `
 ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  d )  ->  (
a `  0 )  =  ( d ` 
0 ) ) ) ) )
66 fveq2 5541 . . . . . . . . . . . 12  |-  ( d  =  b  ->  ( S `  d )  =  ( S `  b ) )
6766eqeq2d 2307 . . . . . . . . . . 11  |-  ( d  =  b  ->  (
( S `  a
)  =  ( S `
 d )  <->  ( S `  a )  =  ( S `  b ) ) )
68 fveq1 5540 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (
d `  0 )  =  ( b ` 
0 ) )
6968eqeq2d 2307 . . . . . . . . . . 11  |-  ( d  =  b  ->  (
( a `  0
)  =  ( d `
 0 )  <->  ( a `  0 )  =  ( b `  0
) ) )
7067, 69imbi12d 311 . . . . . . . . . 10  |-  ( d  =  b  ->  (
( ( S `  a )  =  ( S `  d )  ->  ( a ` 
0 )  =  ( d `  0 ) )  <->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) )
7170imbi2d 307 . . . . . . . . 9  |-  ( d  =  b  ->  (
( ( # `  ( S `  a )
)  =  i  -> 
( ( S `  a )  =  ( S `  d )  ->  ( a ` 
0 )  =  ( d `  0 ) ) )  <->  ( ( # `
 ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
7265, 71cbvral2v 2785 . . . . . . . 8  |-  ( A. c  e.  dom  S A. d  e.  dom  S ( ( # `  ( S `  c )
)  =  i  -> 
( ( S `  c )  =  ( S `  d )  ->  ( c ` 
0 )  =  ( d `  0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
7357, 72sylib 188 . . . . . . 7  |-  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
7473ancli 534 . . . . . 6  |-  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
7535adantr 451 . . . . . . . . . . 11  |-  ( ( a  e.  dom  S  /\  b  e.  dom  S )  ->  ( # `  ( S `  a )
)  e.  NN0 )
76 nn0leltp1 10091 . . . . . . . . . . . . 13  |-  ( ( ( # `  ( S `  a )
)  e.  NN0  /\  i  e.  NN0 )  -> 
( ( # `  ( S `  a )
)  <_  i  <->  ( # `  ( S `  a )
)  <  ( i  +  1 ) ) )
77 nn0re 9990 . . . . . . . . . . . . . 14  |-  ( (
# `  ( S `  a ) )  e. 
NN0  ->  ( # `  ( S `  a )
)  e.  RR )
78 nn0re 9990 . . . . . . . . . . . . . 14  |-  ( i  e.  NN0  ->  i  e.  RR )
79 leloe 8924 . . . . . . . . . . . . . 14  |-  ( ( ( # `  ( S `  a )
)  e.  RR  /\  i  e.  RR )  ->  ( ( # `  ( S `  a )
)  <_  i  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8077, 78, 79syl2an 463 . . . . . . . . . . . . 13  |-  ( ( ( # `  ( S `  a )
)  e.  NN0  /\  i  e.  NN0 )  -> 
( ( # `  ( S `  a )
)  <_  i  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8176, 80bitr3d 246 . . . . . . . . . . . 12  |-  ( ( ( # `  ( S `  a )
)  e.  NN0  /\  i  e.  NN0 )  -> 
( ( # `  ( S `  a )
)  <  ( i  +  1 )  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8281ancoms 439 . . . . . . . . . . 11  |-  ( ( i  e.  NN0  /\  ( # `  ( S `
 a ) )  e.  NN0 )  -> 
( ( # `  ( S `  a )
)  <  ( i  +  1 )  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8375, 82sylan2 460 . . . . . . . . . 10  |-  ( ( i  e.  NN0  /\  ( a  e.  dom  S  /\  b  e.  dom  S ) )  ->  (
( # `  ( S `
 a ) )  <  ( i  +  1 )  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8483imbi1d 308 . . . . . . . . 9  |-  ( ( i  e.  NN0  /\  ( a  e.  dom  S  /\  b  e.  dom  S ) )  ->  (
( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  ( (
( # `  ( S `
 a ) )  <  i  \/  ( # `
 ( S `  a ) )  =  i )  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
85 jaob 758 . . . . . . . . 9  |-  ( ( ( ( # `  ( S `  a )
)  <  i  \/  ( # `  ( S `
 a ) )  =  i )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  ( (
( # `  ( S `
 a ) )  <  i  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
8684, 85syl6bb 252 . . . . . . . 8  |-  ( ( i  e.  NN0  /\  ( a  e.  dom  S  /\  b  e.  dom  S ) )  ->  (
( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  ( (
( # `  ( S `
 a ) )  <  i  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) ) )
87862ralbidva 2596 . . . . . . 7  |-  ( i  e.  NN0  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) ) )
88 r19.26-2 2689 . . . . . . 7  |-  ( A. a  e.  dom  S A. b  e.  dom  S ( ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )  <->  ( A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
8987, 88syl6bb 252 . . . . . 6  |-  ( i  e.  NN0  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) ) )
9074, 89syl5ibr 212 . . . . 5  |-  ( i  e.  NN0  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( i  +  1 )  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
9122, 25, 28, 31, 40, 90nn0ind 10124 . . . 4  |-  ( ( ( # `  ( S `  A )
)  +  1 )  e.  NN0  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( ( # `  ( S `  A )
)  +  1 )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) )
9219, 91syl 15 . . 3  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( ( # `  ( S `  A )
)  +  1 )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) )
9317nn0red 10035 . . . 4  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( # `  ( S `  A )
)  e.  RR )
9493ltp1d 9703 . . 3  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( # `  ( S `  A )
)  <  ( ( # `
 ( S `  A ) )  +  1 ) )
95 fveq2 5541 . . . . . . 7  |-  ( a  =  A  ->  ( S `  a )  =  ( S `  A ) )
9695fveq2d 5545 . . . . . 6  |-  ( a  =  A  ->  ( # `
 ( S `  a ) )  =  ( # `  ( S `  A )
) )
9796breq1d 4049 . . . . 5  |-  ( a  =  A  ->  (
( # `  ( S `
 a ) )  <  ( ( # `  ( S `  A
) )  +  1 )  <->  ( # `  ( S `  A )
)  <  ( ( # `
 ( S `  A ) )  +  1 ) ) )
9895eqeq1d 2304 . . . . . 6  |-  ( a  =  A  ->  (
( S `  a
)  =  ( S `
 b )  <->  ( S `  A )  =  ( S `  b ) ) )
99 fveq1 5540 . . . . . . 7  |-  ( a  =  A  ->  (
a `  0 )  =  ( A ` 
0 ) )
10099eqeq1d 2304 . . . . . 6  |-  ( a  =  A  ->  (
( a `  0
)  =  ( b `
 0 )  <->  ( A `  0 )  =  ( b `  0
) ) )
10198, 100imbi12d 311 . . . . 5  |-  ( a  =  A  ->  (
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) )  <->  ( ( S `
 A )  =  ( S `  b
)  ->  ( A `  0 )  =  ( b `  0
) ) ) )
10297, 101imbi12d 311 . . . 4  |-  ( a  =  A  ->  (
( ( # `  ( S `  a )
)  <  ( ( # `
 ( S `  A ) )  +  1 )  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  A
) )  <  (
( # `  ( S `
 A ) )  +  1 )  -> 
( ( S `  A )  =  ( S `  b )  ->  ( A ` 
0 )  =  ( b `  0 ) ) ) ) )
103 fveq2 5541 . . . . . . 7  |-  ( b  =  B  ->  ( S `  b )  =  ( S `  B ) )
104103eqeq2d 2307 . . . . . 6  |-  ( b  =  B  ->  (
( S `  A
)  =  ( S `
 b )  <->  ( S `  A )  =  ( S `  B ) ) )
105 fveq1 5540 . . . . . . 7  |-  ( b  =  B  ->  (
b `  0 )  =  ( B ` 
0 ) )
106105eqeq2d 2307 . . . . . 6  |-  ( b  =  B  ->  (
( A `  0
)  =  ( b `
 0 )  <->  ( A `  0 )  =  ( B `  0
) ) )
107104, 106imbi12d 311 . . . . 5  |-  ( b  =  B  ->  (
( ( S `  A )  =  ( S `  b )  ->  ( A ` 
0 )  =  ( b `  0 ) )  <->  ( ( S `
 A )  =  ( S `  B
)  ->  ( A `  0 )  =  ( B `  0
) ) ) )
108107imbi2d 307 . . . 4  |-  ( b  =  B  ->  (
( ( # `  ( S `  A )
)  <  ( ( # `
 ( S `  A ) )  +  1 )  ->  (
( S `  A
)  =  ( S `
 b )  -> 
( A `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  A
) )  <  (
( # `  ( S `
 A ) )  +  1 )  -> 
( ( S `  A )  =  ( S `  B )  ->  ( A ` 
0 )  =  ( B `  0 ) ) ) ) )
109102, 108rspc2v 2903 . . 3  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( ( # `
 ( S `  A ) )  +  1 )  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  ( ( # `
 ( S `  A ) )  < 
( ( # `  ( S `  A )
)  +  1 )  ->  ( ( S `
 A )  =  ( S `  B
)  ->  ( A `  0 )  =  ( B `  0
) ) ) ) )
11092, 94, 109mp2d 41 . 2  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( S `  A )  =  ( S `  B )  ->  ( A `  0 )  =  ( B ` 
0 ) ) )
1111103impia 1148 1  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S  /\  ( S `  A )  =  ( S `  B ) )  ->  ( A `  0 )  =  ( B `  0
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560    \ cdif 3162   (/)c0 3468   {csn 3653   <.cop 3656   <.cotp 3657   U_ciun 3921   class class class wbr 4039    e. cmpt 4093    _I cid 4320    X. cxp 4703   dom cdm 4705   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1oc1o 6488   2oc2o 6489   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    < clt 8883    <_ cle 8884    - cmin 9053   NN0cn0 9981   ...cfz 10798  ..^cfzo 10886   #chash 11353  Word cword 11419   splice csplice 11423   <"cs2 11507   ~FG cefg 15031
This theorem is referenced by:  efgrelexlemb  15075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-ot 3663  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-hash 11354  df-word 11425  df-concat 11426  df-s1 11427  df-substr 11428  df-splice 11429  df-s2 11514
  Copyright terms: Public domain W3C validator