MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsrel Structured version   Unicode version

Theorem efgsrel 15366
Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgsrel  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( S `  F ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y,
z, w, v, n)    F( x, y, z, w, v, t, k, m, n)    I( k)    M( y, z, k)

Proof of Theorem efgsrel
Dummy variables  a 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . 6  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . 6  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . . 6  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . . 6  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsdm 15362 . . . . 5  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. a  e.  ( 1..^ ( # `  F ) ) ( F `  a )  e.  ran  ( T `
 ( F `  ( a  -  1 ) ) ) ) )
87simp1bi 972 . . . 4  |-  ( F  e.  dom  S  ->  F  e.  (Word  W  \  { (/) } ) )
9 eldifsn 3927 . . . . 5  |-  ( F  e.  (Word  W  \  { (/) } )  <->  ( F  e. Word  W  /\  F  =/=  (/) ) )
10 lennncl 11736 . . . . 5  |-  ( ( F  e. Word  W  /\  F  =/=  (/) )  ->  ( # `
 F )  e.  NN )
119, 10sylbi 188 . . . 4  |-  ( F  e.  (Word  W  \  { (/) } )  -> 
( # `  F )  e.  NN )
12 fzo0end 11188 . . . 4  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) )
138, 11, 123syl 19 . . 3  |-  ( F  e.  dom  S  -> 
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
) )
14 nnm1nn0 10261 . . . . 5  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  NN0 )
158, 11, 143syl 19 . . . 4  |-  ( F  e.  dom  S  -> 
( ( # `  F
)  -  1 )  e.  NN0 )
16 eleq1 2496 . . . . . . 7  |-  ( a  =  0  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  0  e.  ( 0..^ ( # `  F
) ) ) )
17 fveq2 5728 . . . . . . . 8  |-  ( a  =  0  ->  ( F `  a )  =  ( F ` 
0 ) )
1817breq2d 4224 . . . . . . 7  |-  ( a  =  0  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  0 ) ) )
1916, 18imbi12d 312 . . . . . 6  |-  ( a  =  0  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( 0  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  0 ) ) ) )
2019imbi2d 308 . . . . 5  |-  ( a  =  0  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( 0  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  0 ) ) ) ) )
21 eleq1 2496 . . . . . . 7  |-  ( a  =  i  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  i  e.  ( 0..^ ( # `  F
) ) ) )
22 fveq2 5728 . . . . . . . 8  |-  ( a  =  i  ->  ( F `  a )  =  ( F `  i ) )
2322breq2d 4224 . . . . . . 7  |-  ( a  =  i  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  i ) ) )
2421, 23imbi12d 312 . . . . . 6  |-  ( a  =  i  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) ) ) )
2524imbi2d 308 . . . . 5  |-  ( a  =  i  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) ) ) ) )
26 eleq1 2496 . . . . . . 7  |-  ( a  =  ( i  +  1 )  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  ( i  +  1 )  e.  ( 0..^ ( # `  F ) ) ) )
27 fveq2 5728 . . . . . . . 8  |-  ( a  =  ( i  +  1 )  ->  ( F `  a )  =  ( F `  ( i  +  1 ) ) )
2827breq2d 4224 . . . . . . 7  |-  ( a  =  ( i  +  1 )  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) )
2926, 28imbi12d 312 . . . . . 6  |-  ( a  =  ( i  +  1 )  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
3029imbi2d 308 . . . . 5  |-  ( a  =  ( i  +  1 )  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) ) )
31 eleq1 2496 . . . . . . 7  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( a  e.  ( 0..^ ( # `  F ) )  <->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) ) )
32 fveq2 5728 . . . . . . . 8  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( F `  a )  =  ( F `  ( (
# `  F )  -  1 ) ) )
3332breq2d 4224 . . . . . . 7  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( ( F `  0 )  .~  ( F `  a
)  <->  ( F ` 
0 )  .~  ( F `  ( ( # `
 F )  - 
1 ) ) ) )
3431, 33imbi12d 312 . . . . . 6  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( (
a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( (
( # `  F )  -  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( ( # `  F
)  -  1 ) ) ) ) )
3534imbi2d 308 . . . . 5  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( ( F  e.  dom  S  -> 
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) ) )  <->  ( F  e.  dom  S  ->  (
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( (
# `  F )  -  1 ) ) ) ) ) )
361, 2efger 15350 . . . . . . . 8  |-  .~  Er  W
3736a1i 11 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  ->  .~  Er  W )
38 eldifi 3469 . . . . . . . . 9  |-  ( F  e.  (Word  W  \  { (/) } )  ->  F  e. Word  W )
39 wrdf 11733 . . . . . . . . 9  |-  ( F  e. Word  W  ->  F : ( 0..^ (
# `  F )
) --> W )
408, 38, 393syl 19 . . . . . . . 8  |-  ( F  e.  dom  S  ->  F : ( 0..^ (
# `  F )
) --> W )
4140ffvelrnda 5870 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  -> 
( F `  0
)  e.  W )
4237, 41erref 6925 . . . . . 6  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  -> 
( F `  0
)  .~  ( F `  0 ) )
4342ex 424 . . . . 5  |-  ( F  e.  dom  S  -> 
( 0  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  0
) ) )
44 elnn0uz 10523 . . . . . . . . . . . 12  |-  ( i  e.  NN0  <->  i  e.  (
ZZ>= `  0 ) )
45 peano2fzor 11194 . . . . . . . . . . . 12  |-  ( ( i  e.  ( ZZ>= ` 
0 )  /\  (
i  +  1 )  e.  ( 0..^ (
# `  F )
) )  ->  i  e.  ( 0..^ ( # `  F ) ) )
4644, 45sylanb 459 . . . . . . . . . . 11  |-  ( ( i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) )
47463adant1 975 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) )
48473expia 1155 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) ) )
4948imim1d 71 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) ) ) )
50403ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  F : ( 0..^ (
# `  F )
) --> W )
5150, 47ffvelrnd 5871 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  i
)  e.  W )
52 nn0p1nn 10259 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  NN0  ->  ( i  +  1 )  e.  NN )
53523ad2ant2 979 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  NN )
54 nnuz 10521 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
5553, 54syl6eleq 2526 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= ` 
1 ) )
56 elfzolt2b 11150 . . . . . . . . . . . . . . . 16  |-  ( ( i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F ) ) )
57563ad2ant3 980 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F
) ) )
58 elfzo3 11155 . . . . . . . . . . . . . . 15  |-  ( ( i  +  1 )  e.  ( 1..^ (
# `  F )
)  <->  ( ( i  +  1 )  e.  ( ZZ>= `  1 )  /\  ( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F
) ) ) )
5955, 57, 58sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( 1..^ ( # `  F
) ) )
607simp3bi 974 . . . . . . . . . . . . . . 15  |-  ( F  e.  dom  S  ->  A. a  e.  (
1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) ) )
61603ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  A. a  e.  (
1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) ) )
62 oveq1 6088 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  ( i  +  1 )  ->  (
a  -  1 )  =  ( ( i  +  1 )  - 
1 ) )
6362fveq2d 5732 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  ( i  +  1 )  ->  ( F `  ( a  -  1 ) )  =  ( F `  ( ( i  +  1 )  -  1 ) ) )
6463fveq2d 5732 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( i  +  1 )  ->  ( T `  ( F `  ( a  -  1 ) ) )  =  ( T `  ( F `  ( (
i  +  1 )  -  1 ) ) ) )
6564rneqd 5097 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( i  +  1 )  ->  ran  ( T `  ( F `
 ( a  - 
1 ) ) )  =  ran  ( T `
 ( F `  ( ( i  +  1 )  -  1 ) ) ) )
6627, 65eleq12d 2504 . . . . . . . . . . . . . . 15  |-  ( a  =  ( i  +  1 )  ->  (
( F `  a
)  e.  ran  ( T `  ( F `  ( a  -  1 ) ) )  <->  ( F `  ( i  +  1 ) )  e.  ran  ( T `  ( F `
 ( ( i  +  1 )  - 
1 ) ) ) ) )
6766rspcv 3048 . . . . . . . . . . . . . 14  |-  ( ( i  +  1 )  e.  ( 1..^ (
# `  F )
)  ->  ( A. a  e.  ( 1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) )  ->  ( F `  ( i  +  1 ) )  e.  ran  ( T `  ( F `
 ( ( i  +  1 )  - 
1 ) ) ) ) )
6859, 61, 67sylc 58 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
i  +  1 ) )  e.  ran  ( T `  ( F `  ( ( i  +  1 )  -  1 ) ) ) )
69 nn0cn 10231 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN0  ->  i  e.  CC )
70693ad2ant2 979 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  CC )
71 ax-1cn 9048 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
72 pncan 9311 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  CC  /\  1  e.  CC )  ->  ( ( i  +  1 )  -  1 )  =  i )
7370, 71, 72sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( i  +  1 )  -  1 )  =  i )
7473fveq2d 5732 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
( i  +  1 )  -  1 ) )  =  ( F `
 i ) )
7574fveq2d 5732 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( T `  ( F `  ( (
i  +  1 )  -  1 ) ) )  =  ( T `
 ( F `  i ) ) )
7675rneqd 5097 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  ran  ( T `  ( F `  ( (
i  +  1 )  -  1 ) ) )  =  ran  ( T `  ( F `  i ) ) )
7768, 76eleqtrd 2512 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
i  +  1 ) )  e.  ran  ( T `  ( F `  i ) ) )
781, 2, 3, 4efgi2 15357 . . . . . . . . . . . 12  |-  ( ( ( F `  i
)  e.  W  /\  ( F `  ( i  +  1 ) )  e.  ran  ( T `
 ( F `  i ) ) )  ->  ( F `  i )  .~  ( F `  ( i  +  1 ) ) )
7951, 77, 78syl2anc 643 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  i
)  .~  ( F `  ( i  +  1 ) ) )
8036a1i 11 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  .~  Er  W )
8180ertr 6920 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( ( F `
 0 )  .~  ( F `  i )  /\  ( F `  i )  .~  ( F `  ( i  +  1 ) ) )  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) )
8279, 81mpan2d 656 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( F ` 
0 )  .~  ( F `  i )  ->  ( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) )
83823expia 1155 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( ( F ` 
0 )  .~  ( F `  i )  ->  ( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) )
8483a2d 24 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( ( i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
8549, 84syld 42 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
8685expcom 425 . . . . . 6  |-  ( i  e.  NN0  ->  ( F  e.  dom  S  -> 
( ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) )  -> 
( ( i  +  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
i  +  1 ) ) ) ) ) )
8786a2d 24 . . . . 5  |-  ( i  e.  NN0  ->  ( ( F  e.  dom  S  ->  ( i  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  i
) ) )  -> 
( F  e.  dom  S  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) ) )
8820, 25, 30, 35, 43, 87nn0ind 10366 . . . 4  |-  ( ( ( # `  F
)  -  1 )  e.  NN0  ->  ( F  e.  dom  S  -> 
( ( ( # `  F )  -  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
( # `  F )  -  1 ) ) ) ) )
8915, 88mpcom 34 . . 3  |-  ( F  e.  dom  S  -> 
( ( ( # `  F )  -  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
( # `  F )  -  1 ) ) ) )
9013, 89mpd 15 . 2  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( F `  ( ( # `  F
)  -  1 ) ) )
911, 2, 3, 4, 5, 6efgsval 15363 . 2  |-  ( F  e.  dom  S  -> 
( S `  F
)  =  ( F `
 ( ( # `  F )  -  1 ) ) )
9290, 91breqtrrd 4238 1  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( S `  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   {crab 2709    \ cdif 3317   (/)c0 3628   {csn 3814   <.cop 3817   <.cotp 3818   U_ciun 4093   class class class wbr 4212    e. cmpt 4266    _I cid 4493    X. cxp 4876   dom cdm 4878   ran crn 4879   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   1oc1o 6717   2oc2o 6718    Er wer 6902   CCcc 8988   0cc0 8990   1c1 8991    + caddc 8993    - cmin 9291   NNcn 10000   NN0cn0 10221   ZZ>=cuz 10488   ...cfz 11043  ..^cfzo 11135   #chash 11618  Word cword 11717   splice csplice 11721   <"cs2 11805   ~FG cefg 15338
This theorem is referenced by:  efgredeu  15384  efgred2  15385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-ot 3824  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-ec 6907  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-fzo 11136  df-hash 11619  df-word 11723  df-concat 11724  df-s1 11725  df-substr 11726  df-splice 11727  df-s2 11812  df-efg 15341
  Copyright terms: Public domain W3C validator