MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgval Structured version   Unicode version

Theorem efgval 15341
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
efgval  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }
Distinct variable groups:    y, r,
z, n, x, W    .~ , r, x, y, z   
n, I, r, x, y, z
Allowed substitution hint:    .~ ( n)

Proof of Theorem efgval
Dummy variables  i  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.r . 2  |-  .~  =  ( ~FG  `  I )
2 vex 2951 . . . . . . . . . . . 12  |-  i  e. 
_V
3 2on 6724 . . . . . . . . . . . . 13  |-  2o  e.  On
43elexi 2957 . . . . . . . . . . . 12  |-  2o  e.  _V
52, 4xpex 4982 . . . . . . . . . . 11  |-  ( i  X.  2o )  e. 
_V
6 wrdexg 11731 . . . . . . . . . . 11  |-  ( ( i  X.  2o )  e.  _V  -> Word  ( i  X.  2o )  e. 
_V )
7 fvi 5775 . . . . . . . . . . 11  |-  (Word  (
i  X.  2o )  e.  _V  ->  (  _I  ` Word  ( i  X.  2o ) )  = Word  ( i  X.  2o ) )
85, 6, 7mp2b 10 . . . . . . . . . 10  |-  (  _I 
` Word  ( i  X.  2o ) )  = Word  ( i  X.  2o )
9 xpeq1 4884 . . . . . . . . . . . 12  |-  ( i  =  I  ->  (
i  X.  2o )  =  ( I  X.  2o ) )
10 wrdeq 11730 . . . . . . . . . . . 12  |-  ( ( i  X.  2o )  =  ( I  X.  2o )  -> Word  ( i  X.  2o )  = Word  ( I  X.  2o ) )
119, 10syl 16 . . . . . . . . . . 11  |-  ( i  =  I  -> Word  ( i  X.  2o )  = Word  ( I  X.  2o ) )
1211fveq2d 5724 . . . . . . . . . 10  |-  ( i  =  I  ->  (  _I  ` Word  ( i  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) ) )
138, 12syl5eqr 2481 . . . . . . . . 9  |-  ( i  =  I  -> Word  ( i  X.  2o )  =  (  _I  ` Word  ( I  X.  2o ) ) )
14 efgval.w . . . . . . . . 9  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
1513, 14syl6eqr 2485 . . . . . . . 8  |-  ( i  =  I  -> Word  ( i  X.  2o )  =  W )
16 ereq2 6905 . . . . . . . 8  |-  (Word  (
i  X.  2o )  =  W  ->  (
r  Er Word  ( i  X.  2o )  <->  r  Er  W ) )
1715, 16syl 16 . . . . . . 7  |-  ( i  =  I  ->  (
r  Er Word  ( i  X.  2o )  <->  r  Er  W ) )
18 raleq 2896 . . . . . . . . 9  |-  ( i  =  I  ->  ( A. y  e.  i  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )  <->  A. y  e.  I  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) )
1918ralbidv 2717 . . . . . . . 8  |-  ( i  =  I  ->  ( A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  i  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
)  <->  A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  I  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) )
2015, 19raleqbidv 2908 . . . . . . 7  |-  ( i  =  I  ->  ( A. x  e. Word  ( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  i  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
)  <->  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) )
2117, 20anbi12d 692 . . . . . 6  |-  ( i  =  I  ->  (
( r  Er Word  (
i  X.  2o )  /\  A. x  e. Word 
( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  i  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )  <->  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) ) )
2221abbidv 2549 . . . . 5  |-  ( i  =  I  ->  { r  |  ( r  Er Word 
( i  X.  2o )  /\  A. x  e. Word 
( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  i  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
2322inteqd 4047 . . . 4  |-  ( i  =  I  ->  |^| { r  |  ( r  Er Word 
( i  X.  2o )  /\  A. x  e. Word 
( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  i  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
24 df-efg 15333 . . . 4  |- ~FG  =  ( i  e.  _V  |->  |^| { r  |  ( r  Er Word  (
i  X.  2o )  /\  A. x  e. Word 
( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  i  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
2514efglem 15340 . . . . 5  |-  E. r
( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )
26 intexab 4350 . . . . 5  |-  ( E. r ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
)  <->  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  e.  _V )
2725, 26mpbi 200 . . . 4  |-  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) }  e.  _V
2823, 24, 27fvmpt 5798 . . 3  |-  ( I  e.  _V  ->  ( ~FG  `  I
)  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } )
29 fvprc 5714 . . . 4  |-  ( -.  I  e.  _V  ->  ( ~FG  `  I )  =  (/) )
30 abn0 3638 . . . . . . . 8  |-  ( { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =/=  (/)  <->  E. r ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) )
3125, 30mpbir 201 . . . . . . 7  |-  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) }  =/=  (/)
32 intssuni 4064 . . . . . . 7  |-  ( { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =/=  (/) 
->  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  U. { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
3331, 32ax-mp 8 . . . . . 6  |-  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) }  C_  U. {
r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }
34 erssxp 6920 . . . . . . . . . . . 12  |-  ( r  Er  W  ->  r  C_  ( W  X.  W
) )
3514efgrcl 15339 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
3635simpld 446 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  W  ->  I  e.  _V )
3736con3i 129 . . . . . . . . . . . . . . . 16  |-  ( -.  I  e.  _V  ->  -.  x  e.  W )
3837eq0rdv 3654 . . . . . . . . . . . . . . 15  |-  ( -.  I  e.  _V  ->  W  =  (/) )
3938xpeq2d 4894 . . . . . . . . . . . . . 14  |-  ( -.  I  e.  _V  ->  ( W  X.  W )  =  ( W  X.  (/) ) )
40 xp0 5283 . . . . . . . . . . . . . 14  |-  ( W  X.  (/) )  =  (/)
4139, 40syl6eq 2483 . . . . . . . . . . . . 13  |-  ( -.  I  e.  _V  ->  ( W  X.  W )  =  (/) )
42 ss0b 3649 . . . . . . . . . . . . 13  |-  ( ( W  X.  W ) 
C_  (/)  <->  ( W  X.  W )  =  (/) )
4341, 42sylibr 204 . . . . . . . . . . . 12  |-  ( -.  I  e.  _V  ->  ( W  X.  W ) 
C_  (/) )
4434, 43sylan9ssr 3354 . . . . . . . . . . 11  |-  ( ( -.  I  e.  _V  /\  r  Er  W )  ->  r  C_  (/) )
4544ex 424 . . . . . . . . . 10  |-  ( -.  I  e.  _V  ->  ( r  Er  W  -> 
r  C_  (/) ) )
4645adantrd 455 . . . . . . . . 9  |-  ( -.  I  e.  _V  ->  ( ( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )  ->  r  C_  (/) ) )
4746alrimiv 1641 . . . . . . . 8  |-  ( -.  I  e.  _V  ->  A. r ( ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )  ->  r  C_  (/) ) )
48 sseq1 3361 . . . . . . . . 9  |-  ( w  =  r  ->  (
w  C_  (/)  <->  r  C_  (/) ) )
4948ralab2 3091 . . . . . . . 8  |-  ( A. w  e.  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } w  C_  (/)  <->  A. r ( ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )  ->  r  C_  (/) ) )
5047, 49sylibr 204 . . . . . . 7  |-  ( -.  I  e.  _V  ->  A. w  e.  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } w  C_  (/) )
51 unissb 4037 . . . . . . 7  |-  ( U. { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  (/)  <->  A. w  e.  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } w  C_  (/) )
5250, 51sylibr 204 . . . . . 6  |-  ( -.  I  e.  _V  ->  U. { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  (/) )
5333, 52syl5ss 3351 . . . . 5  |-  ( -.  I  e.  _V  ->  |^|
{ r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  (/) )
54 ss0 3650 . . . . 5  |-  ( |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  (/) 
->  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =  (/) )
5553, 54syl 16 . . . 4  |-  ( -.  I  e.  _V  ->  |^|
{ r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =  (/) )
5629, 55eqtr4d 2470 . . 3  |-  ( -.  I  e.  _V  ->  ( ~FG  `  I )  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
5728, 56pm2.61i 158 . 2  |-  ( ~FG  `  I
)  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) }
581, 57eqtri 2455 1  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   A.wral 2697   _Vcvv 2948    \ cdif 3309    C_ wss 3312   (/)c0 3620   <.cop 3809   <.cotp 3810   U.cuni 4007   |^|cint 4042   class class class wbr 4204    _I cid 4485   Oncon0 4573    X. cxp 4868   ` cfv 5446  (class class class)co 6073   1oc1o 6709   2oc2o 6710    Er wer 6894   0cc0 8982   ...cfz 11035   #chash 11610  Word cword 11709   splice csplice 11713   <"cs2 11797   ~FG cefg 15330
This theorem is referenced by:  efger  15342  efgi  15343  efgval2  15348  frgpuplem  15396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-ot 3816  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-hash 11611  df-word 11715  df-concat 11716  df-s1 11717  df-substr 11718  df-splice 11719  df-s2 11804  df-efg 15333
  Copyright terms: Public domain W3C validator