MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efieq1re Structured version   Unicode version

Theorem efieq1re 12800
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 11921 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
21oveq2d 6097 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
3 recl 11915 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 9114 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
5 ax-icn 9049 . . . . . . . . . . 11  |-  _i  e.  CC
6 imcl 11916 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76recnd 9114 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
8 mulcl 9074 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
95, 7, 8sylancr 645 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
10 adddi 9079 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC  /\  (
_i  x.  ( Im `  A ) )  e.  CC )  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
115, 10mp3an1 1266 . . . . . . . . . 10  |-  ( ( ( Re `  A
)  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) )  =  ( ( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
124, 9, 11syl2anc 643 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
13 ixi 9651 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
1413oveq1i 6091 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( Im `  A ) )  =  ( -u 1  x.  ( Im `  A
) )
15 mulass 9078 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
165, 5, 15mp3an12 1269 . . . . . . . . . . . 12  |-  ( ( Im `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
177, 16syl 16 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
187mulm1d 9485 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u 1  x.  ( Im
`  A ) )  =  -u ( Im `  A ) )
1914, 17, 183eqtr3a 2492 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  ( Im `  A
) ) )  = 
-u ( Im `  A ) )
2019oveq2d 6097 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
2112, 20eqtrd 2468 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
222, 21eqtrd 2468 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )
2322fveq2d 5732 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) ) )
24 mulcl 9074 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
Re `  A )
)  e.  CC )
255, 4, 24sylancr 645 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( Re `  A ) )  e.  CC )
266renegcld 9464 . . . . . . . 8  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
2726recnd 9114 . . . . . . 7  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
28 efadd 12696 . . . . . . 7  |-  ( ( ( _i  x.  (
Re `  A )
)  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
2925, 27, 28syl2anc 643 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )  =  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )
3023, 29eqtrd 2468 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
3130eqeq1d 2444 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  <->  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 ) )
32 efcl 12685 . . . . . . . . 9  |-  ( ( _i  x.  ( Re
`  A ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
3325, 32syl 16 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
34 efcl 12685 . . . . . . . . 9  |-  ( -u ( Im `  A )  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3527, 34syl 16 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3633, 35absmuld 12256 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )  =  ( ( abs `  ( exp `  ( _i  x.  (
Re `  A )
) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) ) )
37 absefi 12797 . . . . . . . . 9  |-  ( ( Re `  A )  e.  RR  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
383, 37syl 16 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
3926reefcld 12690 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  RR )
40 efgt0 12704 . . . . . . . . . . 11  |-  ( -u ( Im `  A )  e.  RR  ->  0  <  ( exp `  -u (
Im `  A )
) )
4126, 40syl 16 . . . . . . . . . 10  |-  ( A  e.  CC  ->  0  <  ( exp `  -u (
Im `  A )
) )
42 0re 9091 . . . . . . . . . . 11  |-  0  e.  RR
43 ltle 9163 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( exp `  -u (
Im `  A )
)  e.  RR )  ->  ( 0  < 
( exp `  -u (
Im `  A )
)  ->  0  <_  ( exp `  -u (
Im `  A )
) ) )
4442, 43mpan 652 . . . . . . . . . 10  |-  ( ( exp `  -u (
Im `  A )
)  e.  RR  ->  ( 0  <  ( exp `  -u ( Im `  A ) )  -> 
0  <_  ( exp `  -u ( Im `  A
) ) ) )
4539, 41, 44sylc 58 . . . . . . . . 9  |-  ( A  e.  CC  ->  0  <_  ( exp `  -u (
Im `  A )
) )
4639, 45absidd 12225 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  -u (
Im `  A )
) )  =  ( exp `  -u (
Im `  A )
) )
4738, 46oveq12d 6099 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( Re `  A ) ) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) )  =  ( 1  x.  ( exp `  -u (
Im `  A )
) ) )
4835mulid2d 9106 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  x.  ( exp `  -u ( Im `  A ) ) )  =  ( exp `  -u (
Im `  A )
) )
4936, 47, 483eqtrrd 2473 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  =  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) ) )
50 fveq2 5728 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )  =  ( abs `  1
) )
5149, 50sylan9eq 2488 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 )  ->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
5251ex 424 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
5331, 52sylbid 207 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  -> 
( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
547negeq0d 9403 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  <->  -u (
Im `  A )  =  0 ) )
55 reim0b 11924 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
56 ef0 12693 . . . . . . 7  |-  ( exp `  0 )  =  1
57 abs1 12102 . . . . . . 7  |-  ( abs `  1 )  =  1
5856, 57eqtr4i 2459 . . . . . 6  |-  ( exp `  0 )  =  ( abs `  1
)
5958eqeq2i 2446 . . . . 5  |-  ( ( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
60 reef11 12720 . . . . . 6  |-  ( (
-u ( Im `  A )  e.  RR  /\  0  e.  RR )  ->  ( ( exp `  -u ( Im `  A ) )  =  ( exp `  0
)  <->  -u ( Im `  A )  =  0 ) )
6126, 42, 60sylancl 644 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  -u ( Im
`  A )  =  0 ) )
6259, 61syl5bbr 251 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  -u ( Im
`  A )  =  0 ) )
6354, 55, 623bitr4rd 278 . . 3  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  A  e.  RR ) )
6453, 63sylibd 206 . 2  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  ->  A  e.  RR )
)
6564imp 419 1  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991   _ici 8992    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121   -ucneg 9292   Recre 11902   Imcim 11903   abscabs 12039   expce 12664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-ico 10922  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673
  Copyright terms: Public domain W3C validator