Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  efilcp Unicode version

Theorem efilcp 25655
Description: A filter containing a set  A exists iff  A has the finite intersection property (i.e. no finite intersection of elements of  A is empty). Bourbaki TG I.37 prop. 1. (Contributed by FL, 20-Nov-2007.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
efilcp  |-  ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  -> 
( -.  (/)  e.  ( fi `  A )  <->  E. x  e.  ( Fil `  B ) A 
C_  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem efilcp
StepHypRef Expression
1 snfil 17575 . . . . . . . 8  |-  ( ( B  e.  V  /\  B  =/=  (/) )  ->  { B }  e.  ( Fil `  B ) )
213adant1 973 . . . . . . 7  |-  ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  ->  { B }  e.  ( Fil `  B ) )
3 0ss 3496 . . . . . . 7  |-  (/)  C_  { B }
4 sseq2 3213 . . . . . . . 8  |-  ( x  =  { B }  ->  ( (/)  C_  x  <->  (/)  C_  { B } ) )
54rspcev 2897 . . . . . . 7  |-  ( ( { B }  e.  ( Fil `  B )  /\  (/)  C_  { B } )  ->  E. x  e.  ( Fil `  B
) (/)  C_  x )
62, 3, 5sylancl 643 . . . . . 6  |-  ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  ->  E. x  e.  ( Fil `  B ) (/)  C_  x )
7 sseq1 3212 . . . . . . 7  |-  ( A  =  (/)  ->  ( A 
C_  x  <->  (/)  C_  x
) )
87rexbidv 2577 . . . . . 6  |-  ( A  =  (/)  ->  ( E. x  e.  ( Fil `  B ) A  C_  x 
<->  E. x  e.  ( Fil `  B )
(/)  C_  x ) )
96, 8syl5ibrcom 213 . . . . 5  |-  ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  -> 
( A  =  (/)  ->  E. x  e.  ( Fil `  B ) A  C_  x )
)
109imp 418 . . . 4  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  A  =  (/) )  ->  E. x  e.  ( Fil `  B ) A 
C_  x )
1110a1d 22 . . 3  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  A  =  (/) )  -> 
( -.  (/)  e.  ( fi `  A )  ->  E. x  e.  ( Fil `  B ) A  C_  x )
)
12 simpl1 958 . . . . . . 7  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  A  C_  ~P B )
13 simprl 732 . . . . . . 7  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  A  =/=  (/) )
14 simprr 733 . . . . . . 7  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  -.  (/)  e.  ( fi `  A ) )
15 simpl2 959 . . . . . . . 8  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  B  e.  V
)
16 fsubbas 17578 . . . . . . . 8  |-  ( B  e.  V  ->  (
( fi `  A
)  e.  ( fBas `  B )  <->  ( A  C_ 
~P B  /\  A  =/=  (/)  /\  -.  (/)  e.  ( fi `  A ) ) ) )
1715, 16syl 15 . . . . . . 7  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( ( fi
`  A )  e.  ( fBas `  B
)  <->  ( A  C_  ~P B  /\  A  =/=  (/)  /\  -.  (/)  e.  ( fi `  A ) ) ) )
1812, 13, 14, 17mpbir3and 1135 . . . . . 6  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( fi `  A )  e.  (
fBas `  B )
)
19 fgcl 17589 . . . . . 6  |-  ( ( fi `  A )  e.  ( fBas `  B
)  ->  ( B filGen ( fi `  A
) )  e.  ( Fil `  B ) )
2018, 19syl 15 . . . . 5  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( B filGen ( fi `  A ) )  e.  ( Fil `  B ) )
21 pwexg 4210 . . . . . . . 8  |-  ( B  e.  V  ->  ~P B  e.  _V )
2215, 21syl 15 . . . . . . 7  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ~P B  e. 
_V )
23 ssexg 4176 . . . . . . . 8  |-  ( ( A  C_  ~P B  /\  ~P B  e.  _V )  ->  A  e.  _V )
24 ssfii 7188 . . . . . . . 8  |-  ( A  e.  _V  ->  A  C_  ( fi `  A
) )
2523, 24syl 15 . . . . . . 7  |-  ( ( A  C_  ~P B  /\  ~P B  e.  _V )  ->  A  C_  ( fi `  A ) )
2612, 22, 25syl2anc 642 . . . . . 6  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  A  C_  ( fi `  A ) )
27 ssfg 17583 . . . . . . 7  |-  ( ( fi `  A )  e.  ( fBas `  B
)  ->  ( fi `  A )  C_  ( B filGen ( fi `  A ) ) )
2818, 27syl 15 . . . . . 6  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( fi `  A )  C_  ( B filGen ( fi `  A ) ) )
2926, 28sstrd 3202 . . . . 5  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  A  C_  ( B filGen ( fi `  A ) ) )
30 sseq2 3213 . . . . . 6  |-  ( x  =  ( B filGen ( fi `  A ) )  ->  ( A  C_  x  <->  A  C_  ( B
filGen ( fi `  A
) ) ) )
3130rspcev 2897 . . . . 5  |-  ( ( ( B filGen ( fi
`  A ) )  e.  ( Fil `  B
)  /\  A  C_  ( B filGen ( fi `  A ) ) )  ->  E. x  e.  ( Fil `  B ) A  C_  x )
3220, 29, 31syl2anc 642 . . . 4  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  ( A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  E. x  e.  ( Fil `  B ) A  C_  x )
3332expr 598 . . 3  |-  ( ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  /\  A  =/=  (/) )  ->  ( -.  (/)  e.  ( fi
`  A )  ->  E. x  e.  ( Fil `  B ) A 
C_  x ) )
3411, 33pm2.61dane 2537 . 2  |-  ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  -> 
( -.  (/)  e.  ( fi `  A )  ->  E. x  e.  ( Fil `  B ) A  C_  x )
)
35 filfbas 17559 . . . 4  |-  ( x  e.  ( Fil `  B
)  ->  x  e.  ( fBas `  B )
)
36 fbasfip 17579 . . . 4  |-  ( x  e.  ( fBas `  B
)  ->  -.  (/)  e.  ( fi `  x ) )
37 vex 2804 . . . . . . 7  |-  x  e. 
_V
38 fiss 7193 . . . . . . 7  |-  ( ( x  e.  _V  /\  A  C_  x )  -> 
( fi `  A
)  C_  ( fi `  x ) )
3937, 38mpan 651 . . . . . 6  |-  ( A 
C_  x  ->  ( fi `  A )  C_  ( fi `  x ) )
4039sseld 3192 . . . . 5  |-  ( A 
C_  x  ->  ( (/) 
e.  ( fi `  A )  ->  (/)  e.  ( fi `  x ) ) )
4140con3rr3 128 . . . 4  |-  ( -.  (/)  e.  ( fi `  x )  ->  ( A  C_  x  ->  -.  (/) 
e.  ( fi `  A ) ) )
4235, 36, 413syl 18 . . 3  |-  ( x  e.  ( Fil `  B
)  ->  ( A  C_  x  ->  -.  (/)  e.  ( fi `  A ) ) )
4342rexlimiv 2674 . 2  |-  ( E. x  e.  ( Fil `  B ) A  C_  x  ->  -.  (/)  e.  ( fi `  A ) )
4434, 43impbid1 194 1  |-  ( ( A  C_  ~P B  /\  B  e.  V  /\  B  =/=  (/) )  -> 
( -.  (/)  e.  ( fi `  A )  <->  E. x  e.  ( Fil `  B ) A 
C_  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   ` cfv 5271  (class class class)co 5874   ficfi 7180   fBascfbas 17534   filGencfg 17535   Filcfil 17556
This theorem is referenced by:  cnfilca  25659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-fin 6883  df-fi 7181  df-fbas 17536  df-fg 17537  df-fil 17557
  Copyright terms: Public domain W3C validator