MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efival Structured version   Unicode version

Theorem efival 12755
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 9051 . . . . . 6  |-  _i  e.  CC
2 mulcl 9076 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 653 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 efcl 12687 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
53, 4syl 16 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
61negcli 9370 . . . . . 6  |-  -u _i  e.  CC
7 mulcl 9076 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
86, 7mpan 653 . . . . 5  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
9 efcl 12687 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
108, 9syl 16 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
115, 10addcld 9109 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
125, 10subcld 9413 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
13 2cn 10072 . . . . 5  |-  2  e.  CC
14 2ne0 10085 . . . . 5  |-  2  =/=  0
1513, 14pm3.2i 443 . . . 4  |-  ( 2  e.  CC  /\  2  =/=  0 )
16 divdir 9703 . . . 4  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1715, 16mp3an3 1269 . . 3  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1811, 12, 17syl2anc 644 . 2  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2
) ) )
1910, 5pncan3d 9416 . . . . . 6  |-  ( A  e.  CC  ->  (
( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( exp `  (
_i  x.  A )
) )
2019oveq2d 6099 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
215, 10, 12addassd 9112 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( exp `  ( _i  x.  A ) )  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
2252timesd 10212 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
2320, 21, 223eqtr4d 2480 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( 2  x.  ( exp `  (
_i  x.  A )
) ) )
2423oveq1d 6098 . . 3  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 ) )
25 divcan3 9704 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2613, 14, 25mp3an23 1272 . . . 4  |-  ( ( exp `  ( _i  x.  A ) )  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
275, 26syl 16 . . 3  |-  ( A  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2824, 27eqtr2d 2471 . 2  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 ) )
29 cosval 12726 . . 3  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
3013, 1mulcli 9097 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
31 ine0 9471 . . . . . . . 8  |-  _i  =/=  0
3213, 1, 14, 31mulne0i 9667 . . . . . . 7  |-  ( 2  x.  _i )  =/=  0
3330, 32pm3.2i 443 . . . . . 6  |-  ( ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )
34 div12 9702 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 ) )  ->  ( _i  x.  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
351, 33, 34mp3an13 1271 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
3612, 35syl 16 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
37 sinval 12725 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
3837oveq2d 6099 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( _i  x.  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) ) )
39 divrec 9696 . . . . . . 7  |-  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
4013, 14, 39mp3an23 1272 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
4112, 40syl 16 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
421mulid2i 9095 . . . . . . . 8  |-  ( 1  x.  _i )  =  _i
4342oveq1i 6093 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( _i  /  (
2  x.  _i ) )
441, 31dividi 9749 . . . . . . . . . 10  |-  ( _i 
/  _i )  =  1
4544oveq2i 6094 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  /  2
)  x.  1 )
46 ax-1cn 9050 . . . . . . . . . 10  |-  1  e.  CC
4746, 13, 1, 1, 14, 31divmuldivi 9776 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )
4845, 47eqtr3i 2460 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( ( 1  x.  _i )  /  (
2  x.  _i ) )
4913, 14reccli 9746 . . . . . . . . 9  |-  ( 1  /  2 )  e.  CC
5049mulid1i 9094 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( 1  /  2
)
5148, 50eqtr3i 2460 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( 1  /  2
)
5243, 51eqtr3i 2460 . . . . . 6  |-  ( _i 
/  ( 2  x.  _i ) )  =  ( 1  /  2
)
5352oveq2i 6094 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) )
5441, 53syl6eqr 2488 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) ) )
5536, 38, 543eqtr4d 2480 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
5629, 55oveq12d 6101 . 2  |-  ( A  e.  CC  ->  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
)  +  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
5718, 28, 563eqtr4d 2480 1  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   ` cfv 5456  (class class class)co 6083   CCcc 8990   0cc0 8992   1c1 8993   _ici 8994    + caddc 8995    x. cmul 8997    - cmin 9293   -ucneg 9294    / cdiv 9679   2c2 10051   expce 12666   sincsin 12668   cosccos 12669
This theorem is referenced by:  efmival  12756  efeul  12765  efieq  12766  sinadd  12767  cosadd  12768  absefi  12799  demoivre  12803  efhalfpi  20381  efipi  20383  ef2pi  20387  efimpi  20401  efif1olem4  20449  1cubrlem  20683  asinsin  20734  atantan  20765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-ico 10924  df-fz 11046  df-fzo 11138  df-fl 11204  df-seq 11326  df-exp 11385  df-fac 11569  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-sin 12674  df-cos 12675
  Copyright terms: Public domain W3C validator