MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efival Unicode version

Theorem efival 12479
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 8841 . . . . . 6  |-  _i  e.  CC
2 mulcl 8866 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 651 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 efcl 12411 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
53, 4syl 15 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
61negcli 9159 . . . . . 6  |-  -u _i  e.  CC
7 mulcl 8866 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
86, 7mpan 651 . . . . 5  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
9 efcl 12411 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
108, 9syl 15 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
115, 10addcld 8899 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
125, 10subcld 9202 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
13 2cn 9861 . . . . 5  |-  2  e.  CC
14 2ne0 9874 . . . . 5  |-  2  =/=  0
1513, 14pm3.2i 441 . . . 4  |-  ( 2  e.  CC  /\  2  =/=  0 )
16 divdir 9492 . . . 4  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1715, 16mp3an3 1266 . . 3  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1811, 12, 17syl2anc 642 . 2  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2
) ) )
1910, 5pncan3d 9205 . . . . . 6  |-  ( A  e.  CC  ->  (
( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( exp `  (
_i  x.  A )
) )
2019oveq2d 5916 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
215, 10, 12addassd 8902 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( exp `  ( _i  x.  A ) )  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
2252timesd 10001 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
2320, 21, 223eqtr4d 2358 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( 2  x.  ( exp `  (
_i  x.  A )
) ) )
2423oveq1d 5915 . . 3  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 ) )
25 divcan3 9493 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2613, 14, 25mp3an23 1269 . . . 4  |-  ( ( exp `  ( _i  x.  A ) )  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
275, 26syl 15 . . 3  |-  ( A  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2824, 27eqtr2d 2349 . 2  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 ) )
29 cosval 12450 . . 3  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
3013, 1mulcli 8887 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
31 ine0 9260 . . . . . . . 8  |-  _i  =/=  0
3213, 1, 14, 31mulne0i 9456 . . . . . . 7  |-  ( 2  x.  _i )  =/=  0
3330, 32pm3.2i 441 . . . . . 6  |-  ( ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )
34 div12 9491 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 ) )  ->  ( _i  x.  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
351, 33, 34mp3an13 1268 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
3612, 35syl 15 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
37 sinval 12449 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
3837oveq2d 5916 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( _i  x.  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) ) )
39 divrec 9485 . . . . . . 7  |-  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
4013, 14, 39mp3an23 1269 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
4112, 40syl 15 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
421mulid2i 8885 . . . . . . . 8  |-  ( 1  x.  _i )  =  _i
4342oveq1i 5910 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( _i  /  (
2  x.  _i ) )
441, 31dividi 9538 . . . . . . . . . 10  |-  ( _i 
/  _i )  =  1
4544oveq2i 5911 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  /  2
)  x.  1 )
46 ax-1cn 8840 . . . . . . . . . 10  |-  1  e.  CC
4746, 13, 1, 1, 14, 31divmuldivi 9565 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )
4845, 47eqtr3i 2338 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( ( 1  x.  _i )  /  (
2  x.  _i ) )
4913, 14reccli 9535 . . . . . . . . 9  |-  ( 1  /  2 )  e.  CC
5049mulid1i 8884 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( 1  /  2
)
5148, 50eqtr3i 2338 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( 1  /  2
)
5243, 51eqtr3i 2338 . . . . . 6  |-  ( _i 
/  ( 2  x.  _i ) )  =  ( 1  /  2
)
5352oveq2i 5911 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) )
5441, 53syl6eqr 2366 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) ) )
5536, 38, 543eqtr4d 2358 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
5629, 55oveq12d 5918 . 2  |-  ( A  e.  CC  ->  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
)  +  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
5718, 28, 563eqtr4d 2358 1  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479   ` cfv 5292  (class class class)co 5900   CCcc 8780   0cc0 8782   1c1 8783   _ici 8784    + caddc 8785    x. cmul 8787    - cmin 9082   -ucneg 9083    / cdiv 9468   2c2 9840   expce 12390   sincsin 12392   cosccos 12393
This theorem is referenced by:  efmival  12480  efeul  12489  efieq  12490  sinadd  12491  cosadd  12492  absefi  12523  demoivre  12527  efhalfpi  19892  efipi  19894  ef2pi  19898  efimpi  19912  efif1olem4  19960  1cubrlem  20190  asinsin  20241  atantan  20272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860  ax-addf 8861  ax-mulf 8862
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-se 4390  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-isom 5301  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-pm 6818  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-sup 7239  df-oi 7270  df-card 7617  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-rp 10402  df-ico 10709  df-fz 10830  df-fzo 10918  df-fl 10972  df-seq 11094  df-exp 11152  df-fac 11336  df-hash 11385  df-shft 11609  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-limsup 11992  df-clim 12009  df-rlim 12010  df-sum 12206  df-ef 12396  df-sin 12398  df-cos 12399
  Copyright terms: Public domain W3C validator