MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efle Unicode version

Theorem efle 12639
Description: The exponential function on the reals is strictly monotonic. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
efle  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  ( exp `  A )  <_  ( exp `  B
) ) )

Proof of Theorem efle
StepHypRef Expression
1 eflt 12638 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  ( exp `  B )  <  ( exp `  A
) ) )
21ancoms 440 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  <->  ( exp `  B )  <  ( exp `  A
) ) )
32notbid 286 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  B  < 
A  <->  -.  ( exp `  B )  <  ( exp `  A ) ) )
4 lenlt 9080 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 reefcl 12609 . . 3  |-  ( A  e.  RR  ->  ( exp `  A )  e.  RR )
6 reefcl 12609 . . 3  |-  ( B  e.  RR  ->  ( exp `  B )  e.  RR )
7 lenlt 9080 . . 3  |-  ( ( ( exp `  A
)  e.  RR  /\  ( exp `  B )  e.  RR )  -> 
( ( exp `  A
)  <_  ( exp `  B )  <->  -.  ( exp `  B )  < 
( exp `  A
) ) )
85, 6, 7syl2an 464 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( exp `  A
)  <_  ( exp `  B )  <->  -.  ( exp `  B )  < 
( exp `  A
) ) )
93, 4, 83bitr4d 277 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  ( exp `  A )  <_  ( exp `  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1717   class class class wbr 4146   ` cfv 5387   RRcr 8915    < clt 9046    <_ cle 9047   expce 12584
This theorem is referenced by:  reef11  12640  logdivlti  20375  cxple2  20448  abscxpbnd  20497  birthdaylem3  20652  amgmlem  20688  logdifbnd  20692  emcllem2  20695  vmage0  20764  chpge0  20769  chtleppi  20854  chtublem  20855  efexple  20925  bposlem1  20928  bposlem6  20933  chebbnd1lem1  21023  chtppilimlem1  21027  pntpbnd1a  21139  pntpbnd2  21141  pntibndlem3  21146  ostth2lem4  21190  ostth2  21191  xrge0iifcnv  24116  zetacvg  24571
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-pm 6950  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-oi 7405  df-card 7752  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-ico 10847  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-fac 11487  df-bc 11514  df-hash 11539  df-shft 11802  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-limsup 12185  df-clim 12202  df-rlim 12203  df-sum 12400  df-ef 12590
  Copyright terms: Public domain W3C validator