MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflegeo Unicode version

Theorem eflegeo 12642
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
Hypotheses
Ref Expression
eflegeo.1  |-  ( ph  ->  A  e.  RR )
eflegeo.2  |-  ( ph  ->  0  <_  A )
eflegeo.3  |-  ( ph  ->  A  <  1 )
Assertion
Ref Expression
eflegeo  |-  ( ph  ->  ( exp `  A
)  <_  ( 1  /  ( 1  -  A ) ) )

Proof of Theorem eflegeo
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10445 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10218 . . . 4  |-  0  e.  ZZ
32a1i 11 . . 3  |-  ( ph  ->  0  e.  ZZ )
4 eqid 2380 . . . . 5  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
54eftval 12599 . . . 4  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
65adantl 453 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
7 eflegeo.1 . . . 4  |-  ( ph  ->  A  e.  RR )
8 reeftcl 12597 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  RR )
97, 8sylan 458 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR )
10 oveq2 6021 . . . . 5  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
11 eqid 2380 . . . . 5  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
12 ovex 6038 . . . . 5  |-  ( A ^ k )  e. 
_V
1310, 11, 12fvmpt 5738 . . . 4  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
1413adantl 453 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
15 reexpcl 11318 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
167, 15sylan 458 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  RR )
17 faccl 11496 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
1817adantl 453 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
1918nnred 9940 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR )
207adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  RR )
21 simpr 448 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
22 eflegeo.2 . . . . . . 7  |-  ( ph  ->  0  <_  A )
2322adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  A )
2420, 21, 23expge0d 11461 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  ( A ^ k ) )
2518nnge1d 9967 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  <_  ( ! `  k ) )
2616, 19, 24, 25lemulge12d 9874 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  <_ 
( ( ! `  k )  x.  ( A ^ k ) ) )
2718nngt0d 9968 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <  ( ! `  k ) )
28 ledivmul 9808 . . . . 5  |-  ( ( ( A ^ k
)  e.  RR  /\  ( A ^ k )  e.  RR  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  ( ( ( A ^ k )  /  ( ! `  k ) )  <_ 
( A ^ k
)  <->  ( A ^
k )  <_  (
( ! `  k
)  x.  ( A ^ k ) ) ) )
2916, 16, 19, 27, 28syl112anc 1188 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A ^ k
)  /  ( ! `
 k ) )  <_  ( A ^
k )  <->  ( A ^ k )  <_ 
( ( ! `  k )  x.  ( A ^ k ) ) ) )
3026, 29mpbird 224 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  <_  ( A ^ k ) )
317recnd 9040 . . . 4  |-  ( ph  ->  A  e.  CC )
324efcllem 12600 . . . 4  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  e. 
dom 
~~>  )
3331, 32syl 16 . . 3  |-  ( ph  ->  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
347, 22absidd 12145 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  =  A )
35 eflegeo.3 . . . . . 6  |-  ( ph  ->  A  <  1 )
3634, 35eqbrtrd 4166 . . . . 5  |-  ( ph  ->  ( abs `  A
)  <  1 )
3731, 36, 14geolim 12567 . . . 4  |-  ( ph  ->  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  ~~>  ( 1  /  (
1  -  A ) ) )
38 seqex 11245 . . . . 5  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  _V
39 ovex 6038 . . . . 5  |-  ( 1  /  ( 1  -  A ) )  e. 
_V
4038, 39breldm 5007 . . . 4  |-  (  seq  0 (  +  , 
( n  e.  NN0  |->  ( A ^ n ) ) )  ~~>  ( 1  /  ( 1  -  A ) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  )
4137, 40syl 16 . . 3  |-  ( ph  ->  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
421, 3, 6, 9, 14, 16, 30, 33, 41isumle 12544 . 2  |-  ( ph  -> 
sum_ k  e.  NN0  ( ( A ^
k )  /  ( ! `  k )
)  <_  sum_ k  e. 
NN0  ( A ^
k ) )
43 efval 12602 . . 3  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( ( A ^
k )  /  ( ! `  k )
) )
4431, 43syl 16 . 2  |-  ( ph  ->  ( exp `  A
)  =  sum_ k  e.  NN0  ( ( A ^ k )  / 
( ! `  k
) ) )
45 expcl 11319 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
4631, 45sylan 458 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
471, 3, 14, 46, 37isumclim 12461 . . 3  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( 1  / 
( 1  -  A
) ) )
4847eqcomd 2385 . 2  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  =  sum_ k  e.  NN0  ( A ^
k ) )
4942, 44, 483brtr4d 4176 1  |-  ( ph  ->  ( exp `  A
)  <_  ( 1  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   class class class wbr 4146    e. cmpt 4200   dom cdm 4811   ` cfv 5387  (class class class)co 6013   CCcc 8914   RRcr 8915   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921    < clt 9046    <_ cle 9047    - cmin 9216    / cdiv 9602   NNcn 9925   NN0cn0 10146   ZZcz 10207    seq cseq 11243   ^cexp 11302   !cfa 11486   abscabs 11959    ~~> cli 12198   sum_csu 12399   expce 12584
This theorem is referenced by:  birthdaylem3  20652  logdiflbnd  20693  emcllem2  20695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-pm 6950  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-oi 7405  df-card 7752  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-ico 10847  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-fac 11487  df-hash 11539  df-shft 11802  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-limsup 12185  df-clim 12202  df-rlim 12203  df-sum 12400  df-ef 12590
  Copyright terms: Public domain W3C validator