MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrirr Unicode version

Theorem efrirr 4374
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr  |-  (  _E  Fr  A  ->  -.  A  e.  A )

Proof of Theorem efrirr
StepHypRef Expression
1 frirr 4370 . . . 4  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  _E  A
)
2 epelg 4306 . . . . 5  |-  ( A  e.  A  ->  ( A  _E  A  <->  A  e.  A ) )
32adantl 452 . . . 4  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  ( A  _E  A  <->  A  e.  A ) )
41, 3mtbid 291 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  e.  A
)
54ex 423 . 2  |-  (  _E  Fr  A  ->  ( A  e.  A  ->  -.  A  e.  A ) )
65pm2.01d 161 1  |-  (  _E  Fr  A  ->  -.  A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   class class class wbr 4023    _E cep 4303    Fr wfr 4349
This theorem is referenced by:  tz7.2  4377  ordirr  4410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-eprel 4305  df-fr 4352
  Copyright terms: Public domain W3C validator