HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Unicode version

Theorem eigposi 22416
Description: A sufficient condition (first conjunct pair, that holds when  T is a positive operator) for an eigenvalue  B (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1  |-  A  e. 
~H
eigpos.2  |-  B  e.  CC
Assertion
Ref Expression
eigposi  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( B  e.  RR  /\  0  <_  B ) )

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 5866 . . . . . . . 8  |-  ( ( T `  A )  =  ( B  .h  A )  ->  ( A  .ih  ( T `  A ) )  =  ( A  .ih  ( B  .h  A )
) )
21eleq1d 2349 . . . . . . 7  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  e.  RR  <->  ( A  .ih  ( B  .h  A
) )  e.  RR ) )
3 oveq1 5865 . . . . . . . . 9  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( T `  A
)  .ih  A )  =  ( ( B  .h  A )  .ih  A ) )
41, 3eqeq12d 2297 . . . . . . . 8  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  ( A  .ih  ( B  .h  A
) )  =  ( ( B  .h  A
)  .ih  A )
) )
5 eigpos.1 . . . . . . . . 9  |-  A  e. 
~H
6 eigpos.2 . . . . . . . . . 10  |-  B  e.  CC
76, 5hvmulcli 21594 . . . . . . . . 9  |-  ( B  .h  A )  e. 
~H
8 hire 21673 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  ( B  .h  A
)  e.  ~H )  ->  ( ( A  .ih  ( B  .h  A
) )  e.  RR  <->  ( A  .ih  ( B  .h  A ) )  =  ( ( B  .h  A )  .ih  A ) ) )
95, 7, 8mp2an 653 . . . . . . . 8  |-  ( ( A  .ih  ( B  .h  A ) )  e.  RR  <->  ( A  .ih  ( B  .h  A
) )  =  ( ( B  .h  A
)  .ih  A )
)
104, 9syl6rbbr 255 . . . . . . 7  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( B  .h  A )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
112, 10bitrd 244 . . . . . 6  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
1211adantr 451 . . . . 5  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
135, 6eigrei 22414 . . . . 5  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )
1412, 13bitrd 244 . . . 4  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  e.  RR  <->  B  e.  RR ) )
1514biimpac 472 . . 3  |-  ( ( ( A  .ih  ( T `  A )
)  e.  RR  /\  ( ( T `  A )  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  B  e.  RR )
1615adantlr 695 . 2  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  B  e.  RR )
17 ax-his4 21664 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( A  .ih  A ) )
185, 17mpan 651 . . . 4  |-  ( A  =/=  0h  ->  0  <  ( A  .ih  A
) )
1918ad2antll 709 . . 3  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <  ( A  .ih  A ) )
20 simplr 731 . . . 4  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  ( A  .ih  ( T `  A ) ) )
211ad2antrl 708 . . . . 5  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( T `  A ) )  =  ( A 
.ih  ( B  .h  A ) ) )
22 his5 21665 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  ~H  /\  A  e.  ~H )  ->  ( A  .ih  ( B  .h  A ) )  =  ( ( * `  B )  x.  ( A  .ih  A ) ) )
236, 5, 5, 22mp3an 1277 . . . . . 6  |-  ( A 
.ih  ( B  .h  A ) )  =  ( ( * `  B )  x.  ( A  .ih  A ) )
2416cjred 11711 . . . . . . 7  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( * `  B )  =  B )
2524oveq1d 5873 . . . . . 6  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( ( * `
 B )  x.  ( A  .ih  A
) )  =  ( B  x.  ( A 
.ih  A ) ) )
2623, 25syl5eq 2327 . . . . 5  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( B  .h  A
) )  =  ( B  x.  ( A 
.ih  A ) ) )
2721, 26eqtrd 2315 . . . 4  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( T `  A ) )  =  ( B  x.  ( A  .ih  A ) ) )
2820, 27breqtrd 4047 . . 3  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  ( B  x.  ( A  .ih  A ) ) )
29 hiidrcl 21674 . . . . 5  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
305, 29ax-mp 8 . . . 4  |-  ( A 
.ih  A )  e.  RR
31 prodge02 9604 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  .ih  A
)  e.  RR )  /\  ( 0  < 
( A  .ih  A
)  /\  0  <_  ( B  x.  ( A 
.ih  A ) ) ) )  ->  0  <_  B )
3230, 31mpanl2 662 . . 3  |-  ( ( B  e.  RR  /\  ( 0  <  ( A  .ih  A )  /\  0  <_  ( B  x.  ( A  .ih  A ) ) ) )  -> 
0  <_  B )
3316, 19, 28, 32syl12anc 1180 . 2  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  B
)
3416, 33jca 518 1  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( B  e.  RR  /\  0  <_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    x. cmul 8742    < clt 8867    <_ cle 8868   *ccj 11581   ~Hchil 21499    .h csm 21501    .ih csp 21502   0hc0v 21504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-hfvmul 21585  ax-hfi 21658  ax-his1 21661  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-2 9804  df-cj 11584  df-re 11585  df-im 11586
  Copyright terms: Public domain W3C validator