HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ela Unicode version

Theorem ela 22974
Description: Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
ela  |-  ( A  e. HAtoms 
<->  ( A  e.  CH  /\  0H  <oH  A ) )

Proof of Theorem ela
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4064 . 2  |-  ( x  =  A  ->  ( 0H  <oH  x  <->  0H  <oH  A ) )
2 df-at 22973 . 2  |- HAtoms  =  {
x  e.  CH  |  0H  <oH  x }
31, 2elrab2 2959 1  |-  ( A  e. HAtoms 
<->  ( A  e.  CH  /\  0H  <oH  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1701   class class class wbr 4060   CHcch 21564   0Hc0h 21570    <oH ccv 21599  HAtomscat 21600
This theorem is referenced by:  elat2  22975  elatcv0  22976  atcv0  22977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-br 4061  df-at 22973
  Copyright terms: Public domain W3C validator