Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab3g Structured version   Unicode version

Theorem elab3g 3088
 Description: Membership in a class abstraction, with a weaker antecedent than elabg 3083. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elab3g.1
Assertion
Ref Expression
elab3g
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem elab3g
StepHypRef Expression
1 nfcv 2572 . 2
2 nfv 1629 . 2
3 elab3g.1 . 2
41, 2, 3elab3gf 3087 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  cab 2422 This theorem is referenced by:  elab3  3089  elssabg  4355  elrnmptg  5120  elrelimasn  5228  elmapg  7031  isust  18233  ellimc  19760  isismty  26510 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958
 Copyright terms: Public domain W3C validator