Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabf Structured version   Unicode version

Theorem elabf 3083
 Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1
elabf.2
elabf.3
Assertion
Ref Expression
elabf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2
2 nfcv 2574 . . 3
3 elabf.1 . . 3
4 elabf.3 . . 3
52, 3, 4elabgf 3082 . 2
61, 5ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wnf 1554   wceq 1653   wcel 1726  cab 2424  cvv 2958 This theorem is referenced by:  elab  3084  dfon2lem1  25415  sdclem2  26460  sdclem1  26461 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960
 Copyright terms: Public domain W3C validator