MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl2 Unicode version

Theorem elbl2 17950
Description: Membership in a ball. (Contributed by NM, 9-Mar-2007.)
Assertion
Ref Expression
elbl2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( P D A )  <  R
) )

Proof of Theorem elbl2
StepHypRef Expression
1 elbl 17949 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
213expa 1151 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  R  e.  RR* )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
32an32s 779 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  R  e.  RR* )  /\  P  e.  X )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
43adantrr 697 . 2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
5 simprr 733 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  ->  A  e.  X )
65biantrurd 494 . 2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( ( P D A )  <  R  <->  ( A  e.  X  /\  ( P D A )  <  R ) ) )
74, 6bitr4d 247 1  |-  ( ( ( D  e.  ( * Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( P D A )  <  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RR*cxr 8866    < clt 8867   * Metcxmt 16369   ballcbl 16371
This theorem is referenced by:  elbl3  17951  blcom  17952  imasf1obl  18034  prdsbl  18037  blsscls2  18050  metcnp  18087  zdis  18322  metdsge  18353  cfil3i  18695  iscfil3  18699  iscmet3lem2  18718  caubl  18733  dvlog2lem  19999  isbnd3  26508  cntotbnd  26520  ismtyima  26527  stirlinglem5  27827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-xr 8871  df-xmet 16373  df-bl 16375
  Copyright terms: Public domain W3C validator