MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls3 Structured version   Unicode version

Theorem elcls3 17152
Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
elcls3.1  |-  ( ph  ->  J  =  ( topGen `  B ) )
elcls3.2  |-  ( ph  ->  X  =  U. J
)
elcls3.3  |-  ( ph  ->  B  e.  TopBases )
elcls3.4  |-  ( ph  ->  S  C_  X )
elcls3.5  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
elcls3  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. x  e.  B  ( P  e.  x  -> 
( x  i^i  S
)  =/=  (/) ) ) )
Distinct variable groups:    x, B    x, P    x, S
Allowed substitution hints:    ph( x)    J( x)    X( x)

Proof of Theorem elcls3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcls3.1 . . . 4  |-  ( ph  ->  J  =  ( topGen `  B ) )
2 elcls3.3 . . . . 5  |-  ( ph  ->  B  e.  TopBases )
3 tgcl 17039 . . . . 5  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
42, 3syl 16 . . . 4  |-  ( ph  ->  ( topGen `  B )  e.  Top )
51, 4eqeltrd 2512 . . 3  |-  ( ph  ->  J  e.  Top )
6 elcls3.4 . . . 4  |-  ( ph  ->  S  C_  X )
7 elcls3.2 . . . 4  |-  ( ph  ->  X  =  U. J
)
86, 7sseqtrd 3386 . . 3  |-  ( ph  ->  S  C_  U. J )
9 elcls3.5 . . . 4  |-  ( ph  ->  P  e.  X )
109, 7eleqtrd 2514 . . 3  |-  ( ph  ->  P  e.  U. J
)
11 eqid 2438 . . . 4  |-  U. J  =  U. J
1211elcls 17142 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) )
135, 8, 10, 12syl3anc 1185 . 2  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) )
14 bastg 17036 . . . . . . . . 9  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
152, 14syl 16 . . . . . . . 8  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1615, 1sseqtr4d 3387 . . . . . . 7  |-  ( ph  ->  B  C_  J )
1716sseld 3349 . . . . . 6  |-  ( ph  ->  ( y  e.  B  ->  y  e.  J ) )
1817imim1d 72 . . . . 5  |-  ( ph  ->  ( ( y  e.  J  ->  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )  ->  (
y  e.  B  -> 
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
1918ralimdv2 2788 . . . 4  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  ->  A. y  e.  B  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) ) ) )
20 eleq2 2499 . . . . . 6  |-  ( y  =  x  ->  ( P  e.  y  <->  P  e.  x ) )
21 ineq1 3537 . . . . . . 7  |-  ( y  =  x  ->  (
y  i^i  S )  =  ( x  i^i 
S ) )
2221neeq1d 2616 . . . . . 6  |-  ( y  =  x  ->  (
( y  i^i  S
)  =/=  (/)  <->  ( x  i^i  S )  =/=  (/) ) )
2320, 22imbi12d 313 . . . . 5  |-  ( y  =  x  ->  (
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) )  <->  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
2423cbvralv 2934 . . . 4  |-  ( A. y  e.  B  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  <->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
2519, 24syl6ib 219 . . 3  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  ->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) ) )
26 simprl 734 . . . . . . . 8  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  y  e.  J )
271ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  J  =  ( topGen `  B
) )
2826, 27eleqtrd 2514 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  y  e.  ( topGen `  B )
)
29 simprr 735 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  P  e.  y )
30 tg2 17035 . . . . . . 7  |-  ( ( y  e.  ( topGen `  B )  /\  P  e.  y )  ->  E. z  e.  B  ( P  e.  z  /\  z  C_  y ) )
3128, 29, 30syl2anc 644 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  E. z  e.  B  ( P  e.  z  /\  z  C_  y ) )
32 eleq2 2499 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( P  e.  x  <->  P  e.  z ) )
33 ineq1 3537 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
x  i^i  S )  =  ( z  i^i 
S ) )
3433neeq1d 2616 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( x  i^i  S
)  =/=  (/)  <->  ( z  i^i  S )  =/=  (/) ) )
3532, 34imbi12d 313 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  <->  ( P  e.  z  ->  ( z  i^i  S )  =/=  (/) ) ) )
3635rspccva 3053 . . . . . . . . . . . 12  |-  ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  /\  z  e.  B )  ->  ( P  e.  z  ->  ( z  i^i 
S )  =/=  (/) ) )
3736imp 420 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  /\  z  e.  B )  /\  P  e.  z
)  ->  ( z  i^i  S )  =/=  (/) )
38 ssdisj 3679 . . . . . . . . . . . . 13  |-  ( ( z  C_  y  /\  ( y  i^i  S
)  =  (/) )  -> 
( z  i^i  S
)  =  (/) )
3938ex 425 . . . . . . . . . . . 12  |-  ( z 
C_  y  ->  (
( y  i^i  S
)  =  (/)  ->  (
z  i^i  S )  =  (/) ) )
4039necon3d 2641 . . . . . . . . . . 11  |-  ( z 
C_  y  ->  (
( z  i^i  S
)  =/=  (/)  ->  (
y  i^i  S )  =/=  (/) ) )
4137, 40syl5com 29 . . . . . . . . . 10  |-  ( ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  /\  z  e.  B )  /\  P  e.  z
)  ->  ( z  C_  y  ->  ( y  i^i  S )  =/=  (/) ) )
4241exp31 589 . . . . . . . . 9  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  (
z  e.  B  -> 
( P  e.  z  ->  ( z  C_  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
4342imp4a 574 . . . . . . . 8  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  (
z  e.  B  -> 
( ( P  e.  z  /\  z  C_  y )  ->  (
y  i^i  S )  =/=  (/) ) ) )
4443rexlimdv 2831 . . . . . . 7  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  ( E. z  e.  B  ( P  e.  z  /\  z  C_  y )  ->  ( y  i^i 
S )  =/=  (/) ) )
4544ad2antlr 709 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  ( E. z  e.  B  ( P  e.  z  /\  z  C_  y )  ->  ( y  i^i 
S )  =/=  (/) ) )
4631, 45mpd 15 . . . . 5  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  (
y  i^i  S )  =/=  (/) )
4746exp43 597 . . . 4  |-  ( ph  ->  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  -> 
( y  e.  J  ->  ( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
4847ralrimdv 2797 . . 3  |-  ( ph  ->  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) ) ) )
4925, 48impbid 185 . 2  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  <->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
5013, 49bitrd 246 1  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. x  e.  B  ( P  e.  x  -> 
( x  i^i  S
)  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708    i^i cin 3321    C_ wss 3322   (/)c0 3630   U.cuni 4017   ` cfv 5457   topGenctg 13670   Topctop 16963   TopBasesctb 16967   clsccl 17087
This theorem is referenced by:  2ndcsep  17527  ptclsg  17652  qdensere  18809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-topgen 13672  df-top 16968  df-bases 16970  df-cld 17088  df-ntr 17089  df-cls 17090
  Copyright terms: Public domain W3C validator