MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf Structured version   Unicode version

Theorem elcncf 18911
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
elcncf  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cncfval 18910 . . . 4  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21eleq2d 2502 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  F  e.  { f  e.  ( B  ^m  A )  | 
A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } ) )
3 fveq1 5719 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4 fveq1 5719 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  w )  =  ( F `  w ) )
53, 4oveq12d 6091 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  x
)  -  ( f `
 w ) )  =  ( ( F `
 x )  -  ( F `  w ) ) )
65fveq2d 5724 . . . . . . . 8  |-  ( f  =  F  ->  ( abs `  ( ( f `
 x )  -  ( f `  w
) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
76breq1d 4214 . . . . . . 7  |-  ( f  =  F  ->  (
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
87imbi2d 308 . . . . . 6  |-  ( f  =  F  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98rexralbidv 2741 . . . . 5  |-  ( f  =  F  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1092ralbidv 2739 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1110elrab 3084 . . 3  |-  ( F  e.  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
122, 11syl6bb 253 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
13 cnex 9063 . . . . 5  |-  CC  e.  _V
1413ssex 4339 . . . 4  |-  ( B 
C_  CC  ->  B  e. 
_V )
1513ssex 4339 . . . 4  |-  ( A 
C_  CC  ->  A  e. 
_V )
16 elmapg 7023 . . . 4  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( F  e.  ( B  ^m  A )  <-> 
F : A --> B ) )
1714, 15, 16syl2anr 465 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( B  ^m  A )  <->  F : A
--> B ) )
1817anbi1d 686 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F  e.  ( B  ^m  A )  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
1912, 18bitrd 245 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    C_ wss 3312   class class class wbr 4204   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   CCcc 8980    < clt 9112    - cmin 9283   RR+crp 10604   abscabs 12031   -cn->ccncf 18898
This theorem is referenced by:  elcncf2  18912  cncff  18915  elcncf1di  18917  rescncf  18919  cncfmet  18930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-map 7012  df-cncf 18900
  Copyright terms: Public domain W3C validator