MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf Unicode version

Theorem elcncf 18393
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
elcncf  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cncfval 18392 . . . 4  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21eleq2d 2350 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  F  e.  { f  e.  ( B  ^m  A )  | 
A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } ) )
3 fveq1 5524 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4 fveq1 5524 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  w )  =  ( F `  w ) )
53, 4oveq12d 5876 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  x
)  -  ( f `
 w ) )  =  ( ( F `
 x )  -  ( F `  w ) ) )
65fveq2d 5529 . . . . . . . 8  |-  ( f  =  F  ->  ( abs `  ( ( f `
 x )  -  ( f `  w
) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
76breq1d 4033 . . . . . . 7  |-  ( f  =  F  ->  (
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
87imbi2d 307 . . . . . 6  |-  ( f  =  F  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98rexralbidv 2587 . . . . 5  |-  ( f  =  F  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1092ralbidv 2585 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1110elrab 2923 . . 3  |-  ( F  e.  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
122, 11syl6bb 252 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
13 cnex 8818 . . . . 5  |-  CC  e.  _V
1413ssex 4158 . . . 4  |-  ( B 
C_  CC  ->  B  e. 
_V )
1513ssex 4158 . . . 4  |-  ( A 
C_  CC  ->  A  e. 
_V )
16 elmapg 6785 . . . 4  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( F  e.  ( B  ^m  A )  <-> 
F : A --> B ) )
1714, 15, 16syl2anr 464 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( B  ^m  A )  <->  F : A
--> B ) )
1817anbi1d 685 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F  e.  ( B  ^m  A )  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
1912, 18bitrd 244 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    C_ wss 3152   class class class wbr 4023   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   CCcc 8735    < clt 8867    - cmin 9037   RR+crp 10354   abscabs 11719   -cn->ccncf 18380
This theorem is referenced by:  elcncf2  18394  cncff  18397  elcncf1di  18399  rescncf  18401  cncfmet  18412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-cncf 18382
  Copyright terms: Public domain W3C validator