HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elcnop Structured version   Unicode version

Theorem elcnop 23365
Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elcnop  |-  ( T  e.  ConOp 
<->  ( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) ) )
Distinct variable group:    x, w, y, z, T

Proof of Theorem elcnop
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq1 5730 . . . . . . . . 9  |-  ( t  =  T  ->  (
t `  w )  =  ( T `  w ) )
2 fveq1 5730 . . . . . . . . 9  |-  ( t  =  T  ->  (
t `  x )  =  ( T `  x ) )
31, 2oveq12d 6102 . . . . . . . 8  |-  ( t  =  T  ->  (
( t `  w
)  -h  ( t `
 x ) )  =  ( ( T `
 w )  -h  ( T `  x
) ) )
43fveq2d 5735 . . . . . . 7  |-  ( t  =  T  ->  ( normh `  ( ( t `
 w )  -h  ( t `  x
) ) )  =  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) ) )
54breq1d 4225 . . . . . 6  |-  ( t  =  T  ->  (
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y  <->  ( normh `  (
( T `  w
)  -h  ( T `
 x ) ) )  <  y ) )
65imbi2d 309 . . . . 5  |-  ( t  =  T  ->  (
( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y )  <->  ( ( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x )
) )  <  y
) ) )
76rexralbidv 2751 . . . 4  |-  ( t  =  T  ->  ( E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y )  <->  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) ) )
872ralbidv 2749 . . 3  |-  ( t  =  T  ->  ( A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y )  <->  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x )
) )  <  y
) ) )
9 df-cnop 23348 . . 3  |-  ConOp  =  {
t  e.  ( ~H 
^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) }
108, 9elrab2 3096 . 2  |-  ( T  e.  ConOp 
<->  ( T  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) ) )
11 ax-hilex 22507 . . . 4  |-  ~H  e.  _V
1211, 11elmap 7045 . . 3  |-  ( T  e.  ( ~H  ^m  ~H )  <->  T : ~H --> ~H )
1312anbi1i 678 . 2  |-  ( ( T  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) )  <->  ( T : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x )
) )  <  y
) ) )
1410, 13bitri 242 1  |-  ( T  e.  ConOp 
<->  ( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   class class class wbr 4215   -->wf 5453   ` cfv 5457  (class class class)co 6084    ^m cmap 7021    < clt 9125   RR+crp 10617   ~Hchil 22427   normhcno 22431    -h cmv 22433   ConOpccop 22454
This theorem is referenced by:  cnopc  23421  0cnop  23487  idcnop  23489  lnopconi  23542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-hilex 22507
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-map 7023  df-cnop 23348
  Copyright terms: Public domain W3C validator