MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcnv Unicode version

Theorem elcnv 4858
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elcnv  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
Distinct variable groups:    x, y, A    x, R, y

Proof of Theorem elcnv
StepHypRef Expression
1 df-cnv 4697 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
21eleq2i 2347 . 2  |-  ( A  e.  `' R  <->  A  e.  {
<. x ,  y >.  |  y R x } )
3 elopab 4272 . 2  |-  ( A  e.  { <. x ,  y >.  |  y R x }  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
42, 3bitri 240 1  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023   {copab 4076   `'ccnv 4688
This theorem is referenced by:  elcnv2  4859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-cnv 4697
  Copyright terms: Public domain W3C validator