Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiftp Structured version   Unicode version

Theorem eldiftp 24395
 Description: Membership in a set with three elements removed. Similar to eldifsn 3929 and eldifpr 24394. (Contributed by David A. Wheeler, 22-Jul-2017.)
Assertion
Ref Expression
eldiftp

Proof of Theorem eldiftp
StepHypRef Expression
1 eldif 3332 . 2
2 eltpg 3853 . . . . 5
32notbid 287 . . . 4
4 ne3anior 2692 . . . 4
53, 4syl6bbr 256 . . 3
65pm5.32i 620 . 2
71, 6bitri 242 1
 Colors of variables: wff set class Syntax hints:   wn 3   wb 178   wa 360   w3o 936   w3a 937   wceq 1653   wcel 1726   wne 2601   cdif 3319  ctp 3818 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2960  df-dif 3325  df-un 3327  df-sn 3822  df-pr 3823  df-tp 3824
 Copyright terms: Public domain W3C validator