Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2b Structured version   Unicode version

Theorem eldioph2b 26835
Description: While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set  ( S  \ 
( 1 ... N
) ). For instance, in diophin 26845 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2b  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( A  e.  (Dioph `  N )  <->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
Distinct variable groups:    A, p    u, N, t, p    u, S, t, p
Allowed substitution hints:    A( u, t)

Proof of Theorem eldioph2b
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophb 26829 . . 3  |-  ( A  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. a  e.  ( ZZ>= `  N ) E. b  e.  (mzPoly `  ( 1 ... a
) ) A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) } ) )
2 simplll 736 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  N  e.  NN0 )
3 simplrl 738 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  -.  S  e.  Fin )
4 simplrr 739 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  ( 1 ... N )  C_  S
)
5 simprl 734 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  a  e.  (
ZZ>= `  N ) )
6 eldioph2lem2 26833 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  a  e.  (
ZZ>= `  N ) ) )  ->  E. c
( c : ( 1 ... a )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
72, 3, 4, 5, 6syl22anc 1186 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  E. c ( c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )
8 rexv 2972 . . . . . . . 8  |-  ( E. c  e.  _V  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  <->  E. c ( c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )
97, 8sylibr 205 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  E. c  e.  _V  ( c : ( 1 ... a )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
10 simp-5r 747 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  S  e.  _V )
11 simprr 735 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  b  e.  (mzPoly `  ( 1 ... a
) ) )
1211ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  b  e.  (mzPoly `  ( 1 ... a ) ) )
13 simprl 734 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  c : ( 1 ... a ) -1-1-> S )
14 f1f 5642 . . . . . . . . . . . 12  |-  ( c : ( 1 ... a ) -1-1-> S  -> 
c : ( 1 ... a ) --> S )
1513, 14syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  c : ( 1 ... a ) --> S )
16 mzprename 26820 . . . . . . . . . . 11  |-  ( ( S  e.  _V  /\  b  e.  (mzPoly `  (
1 ... a ) )  /\  c : ( 1 ... a ) --> S )  ->  (
e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  o.  c ) ) )  e.  (mzPoly `  S ) )
1710, 12, 15, 16syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  (
e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  o.  c ) ) )  e.  (mzPoly `  S ) )
18 simprr 735 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  (
c  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )
19 diophrw 26831 . . . . . . . . . . . 12  |-  ( ( S  e.  _V  /\  c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) }  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) } )
2019eqcomd 2443 . . . . . . . . . . 11  |-  ( ( S  e.  _V  /\  c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } )
2110, 13, 18, 20syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  { t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } )
22 fveq1 5730 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( p `  u
)  =  ( ( e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  o.  c ) ) ) `  u ) )
2322eqeq1d 2446 . . . . . . . . . . . . . . 15  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( ( p `  u )  =  0  <-> 
( ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) ) `  u )  =  0 ) )
2423anbi2d 686 . . . . . . . . . . . . . 14  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 )  <->  ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) ) )
2524rexbidv 2728 . . . . . . . . . . . . 13  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 )  <->  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) ) )
2625abbidv 2552 . . . . . . . . . . . 12  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } )
2726eqeq2d 2449 . . . . . . . . . . 11  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } ) )
2827rspcev 3054 . . . . . . . . . 10  |-  ( ( ( e  e.  ( ZZ  ^m  S ) 
|->  ( b `  (
e  o.  c ) ) )  e.  (mzPoly `  S )  /\  {
t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )
2917, 21, 28syl2anc 644 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
3029ex 425 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN0  /\  S  e. 
_V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  /\  c  e.  _V )  ->  ( ( c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
3130rexlimdva 2832 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  ( E. c  e.  _V  ( c : ( 1 ... a
) -1-1-> S  /\  (
c  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
329, 31mpd 15 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )
33 eqeq1 2444 . . . . . . 7  |-  ( A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  ->  ( A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
3433rexbidv 2728 . . . . . 6  |-  ( A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  ->  ( E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  <->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
3532, 34syl5ibrcom 215 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  ( A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  ->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } ) )
3635rexlimdvva 2839 . . . 4  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( E. a  e.  ( ZZ>= `  N ) E. b  e.  (mzPoly `  ( 1 ... a
) ) A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  ->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } ) )
3736adantld 455 . . 3  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( ( N  e. 
NN0  /\  E. a  e.  ( ZZ>= `  N ) E. b  e.  (mzPoly `  ( 1 ... a
) ) A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) } )  ->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
381, 37syl5bi 210 . 2  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( A  e.  (Dioph `  N )  ->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
39 simpr 449 . . . . 5  |-  ( ( ( ( ( N  e.  NN0  /\  S  e. 
_V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  /\  A  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )  ->  A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
40 simplll 736 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  N  e.  NN0 )
41 simpllr 737 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  S  e.  _V )
42 simplrr 739 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  ( 1 ... N )  C_  S
)
43 simpr 449 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  p  e.  (mzPoly `  S ) )
44 eldioph2 26834 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )  /\  p  e.  (mzPoly `  S ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  e.  (Dioph `  N
) )
4540, 41, 42, 43, 44syl121anc 1190 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  e.  (Dioph `  N ) )
4645adantr 453 . . . . 5  |-  ( ( ( ( ( N  e.  NN0  /\  S  e. 
_V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  /\  A  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  e.  (Dioph `  N
) )
4739, 46eqeltrd 2512 . . . 4  |-  ( ( ( ( ( N  e.  NN0  /\  S  e. 
_V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  /\  A  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )  ->  A  e.  (Dioph `  N
) )
4847ex 425 . . 3  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  ( A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  ->  A  e.  (Dioph `  N ) ) )
4948rexlimdva 2832 . 2  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  ->  A  e.  (Dioph `  N )
) )
5038, 49impbid 185 1  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( A  e.  (Dioph `  N )  <->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424   E.wrex 2708   _Vcvv 2958    C_ wss 3322    e. cmpt 4269    _I cid 4496    |` cres 4883    o. ccom 4885   -->wf 5453   -1-1->wf1 5454   ` cfv 5457  (class class class)co 6084    ^m cmap 7021   Fincfn 7112   0cc0 8995   1c1 8996   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048  mzPolycmzp 26793  Diophcdioph 26827
This theorem is referenced by:  eldioph3b  26837  diophin  26845  diophun  26846  eldioph4b  26886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-hash 11624  df-mzpcl 26794  df-mzp 26795  df-dioph 26828
  Copyright terms: Public domain W3C validator