Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2b Structured version   Unicode version

Theorem eldioph2b 26812
Description: While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set  ( S  \ 
( 1 ... N
) ). For instance, in diophin 26822 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2b  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( A  e.  (Dioph `  N )  <->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
Distinct variable groups:    A, p    u, N, t, p    u, S, t, p
Allowed substitution hints:    A( u, t)

Proof of Theorem eldioph2b
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophb 26806 . . 3  |-  ( A  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. a  e.  ( ZZ>= `  N ) E. b  e.  (mzPoly `  ( 1 ... a
) ) A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) } ) )
2 simplll 735 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  N  e.  NN0 )
3 simplrl 737 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  -.  S  e.  Fin )
4 simplrr 738 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  ( 1 ... N )  C_  S
)
5 simprl 733 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  a  e.  (
ZZ>= `  N ) )
6 eldioph2lem2 26810 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  a  e.  (
ZZ>= `  N ) ) )  ->  E. c
( c : ( 1 ... a )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
72, 3, 4, 5, 6syl22anc 1185 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  E. c ( c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )
8 rexv 2962 . . . . . . . 8  |-  ( E. c  e.  _V  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  <->  E. c ( c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )
97, 8sylibr 204 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  E. c  e.  _V  ( c : ( 1 ... a )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
10 simp-5r 746 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  S  e.  _V )
11 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  b  e.  (mzPoly `  ( 1 ... a
) ) )
1211ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  b  e.  (mzPoly `  ( 1 ... a ) ) )
13 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  c : ( 1 ... a ) -1-1-> S )
14 f1f 5631 . . . . . . . . . . . 12  |-  ( c : ( 1 ... a ) -1-1-> S  -> 
c : ( 1 ... a ) --> S )
1513, 14syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  c : ( 1 ... a ) --> S )
16 mzprename 26797 . . . . . . . . . . 11  |-  ( ( S  e.  _V  /\  b  e.  (mzPoly `  (
1 ... a ) )  /\  c : ( 1 ... a ) --> S )  ->  (
e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  o.  c ) ) )  e.  (mzPoly `  S ) )
1710, 12, 15, 16syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  (
e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  o.  c ) ) )  e.  (mzPoly `  S ) )
18 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  (
c  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )
19 diophrw 26808 . . . . . . . . . . . 12  |-  ( ( S  e.  _V  /\  c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) }  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) } )
2019eqcomd 2440 . . . . . . . . . . 11  |-  ( ( S  e.  _V  /\  c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } )
2110, 13, 18, 20syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  { t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } )
22 fveq1 5719 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( p `  u
)  =  ( ( e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  o.  c ) ) ) `  u ) )
2322eqeq1d 2443 . . . . . . . . . . . . . . 15  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( ( p `  u )  =  0  <-> 
( ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) ) `  u )  =  0 ) )
2423anbi2d 685 . . . . . . . . . . . . . 14  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 )  <->  ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) ) )
2524rexbidv 2718 . . . . . . . . . . . . 13  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 )  <->  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) ) )
2625abbidv 2549 . . . . . . . . . . . 12  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } )
2726eqeq2d 2446 . . . . . . . . . . 11  |-  ( p  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  o.  c
) ) )  -> 
( { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } ) )
2827rspcev 3044 . . . . . . . . . 10  |-  ( ( ( e  e.  ( ZZ  ^m  S ) 
|->  ( b `  (
e  o.  c ) ) )  e.  (mzPoly `  S )  /\  {
t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  o.  c ) ) ) `
 u )  =  0 ) } )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )
2917, 21, 28syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  (
ZZ>= `  N )  /\  b  e.  (mzPoly `  (
1 ... a ) ) ) )  /\  c  e.  _V )  /\  (
c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
3029ex 424 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN0  /\  S  e. 
_V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  /\  c  e.  _V )  ->  ( ( c : ( 1 ... a ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
3130rexlimdva 2822 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  ( E. c  e.  _V  ( c : ( 1 ... a
) -1-1-> S  /\  (
c  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
329, 31mpd 15 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )
33 eqeq1 2441 . . . . . . 7  |-  ( A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  ->  ( A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
3433rexbidv 2718 . . . . . 6  |-  ( A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  ->  ( E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  <->  E. p  e.  (mzPoly `  S ) { t  |  E. d  e.  ( NN0  ^m  (
1 ... a ) ) ( t  =  ( d  |`  ( 1 ... N ) )  /\  ( b `  d )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
3532, 34syl5ibrcom 214 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  ( ZZ>= `  N )  /\  b  e.  (mzPoly `  ( 1 ... a
) ) ) )  ->  ( A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  ->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } ) )
3635rexlimdvva 2829 . . . 4  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( E. a  e.  ( ZZ>= `  N ) E. b  e.  (mzPoly `  ( 1 ... a
) ) A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) }  ->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } ) )
3736adantld 454 . . 3  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( ( N  e. 
NN0  /\  E. a  e.  ( ZZ>= `  N ) E. b  e.  (mzPoly `  ( 1 ... a
) ) A  =  { t  |  E. d  e.  ( NN0  ^m  ( 1 ... a
) ) ( t  =  ( d  |`  ( 1 ... N
) )  /\  (
b `  d )  =  0 ) } )  ->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
381, 37syl5bi 209 . 2  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( A  e.  (Dioph `  N )  ->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
39 simpr 448 . . . . 5  |-  ( ( ( ( ( N  e.  NN0  /\  S  e. 
_V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  /\  A  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )  ->  A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
40 simplll 735 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  N  e.  NN0 )
41 simpllr 736 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  S  e.  _V )
42 simplrr 738 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  ( 1 ... N )  C_  S
)
43 simpr 448 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  p  e.  (mzPoly `  S ) )
44 eldioph2 26811 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )  /\  p  e.  (mzPoly `  S ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  e.  (Dioph `  N
) )
4540, 41, 42, 43, 44syl121anc 1189 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  e.  (Dioph `  N ) )
4645adantr 452 . . . . 5  |-  ( ( ( ( ( N  e.  NN0  /\  S  e. 
_V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  /\  A  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  e.  (Dioph `  N
) )
4739, 46eqeltrd 2509 . . . 4  |-  ( ( ( ( ( N  e.  NN0  /\  S  e. 
_V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  /\  A  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } )  ->  A  e.  (Dioph `  N
) )
4847ex 424 . . 3  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  _V )  /\  ( -.  S  e.  Fin  /\  ( 1 ... N
)  C_  S )
)  /\  p  e.  (mzPoly `  S ) )  ->  ( A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  ->  A  e.  (Dioph `  N ) ) )
4948rexlimdva 2822 . 2  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  ->  A  e.  (Dioph `  N )
) )
5038, 49impbid 184 1  |-  ( ( ( N  e.  NN0  /\  S  e.  _V )  /\  ( -.  S  e. 
Fin  /\  ( 1 ... N )  C_  S ) )  -> 
( A  e.  (Dioph `  N )  <->  E. p  e.  (mzPoly `  S ) A  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421   E.wrex 2698   _Vcvv 2948    C_ wss 3312    e. cmpt 4258    _I cid 4485    |` cres 4872    o. ccom 4874   -->wf 5442   -1-1->wf1 5443   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   Fincfn 7101   0cc0 8982   1c1 8983   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035  mzPolycmzp 26770  Diophcdioph 26804
This theorem is referenced by:  eldioph3b  26814  diophin  26822  diophun  26823  eldioph4b  26863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-hash 11611  df-mzpcl 26771  df-mzp 26772  df-dioph 26805
  Copyright terms: Public domain W3C validator