Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem2 Unicode version

Theorem eldioph2lem2 26943
Description: Lemma for eldioph2 26944. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem2  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
Distinct variable groups:    N, c    S, c    A, c

Proof of Theorem eldioph2lem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simplr 731 . . . 4  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  -.  S  e.  Fin )
2 fzfi 11050 . . . 4  |-  ( 1 ... N )  e. 
Fin
3 difinf 7143 . . . 4  |-  ( ( -.  S  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  -.  ( S  \ 
( 1 ... N
) )  e.  Fin )
41, 2, 3sylancl 643 . . 3  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  -.  ( S  \  ( 1 ... N ) )  e. 
Fin )
5 fzfi 11050 . . . 4  |-  ( 1 ... A )  e. 
Fin
6 diffi 7105 . . . 4  |-  ( ( 1 ... A )  e.  Fin  ->  (
( 1 ... A
)  \  ( 1 ... N ) )  e.  Fin )
75, 6ax-mp 8 . . 3  |-  ( ( 1 ... A ) 
\  ( 1 ... N ) )  e. 
Fin
8 isinffi 7641 . . 3  |-  ( ( -.  ( S  \ 
( 1 ... N
) )  e.  Fin  /\  ( ( 1 ... A )  \  (
1 ... N ) )  e.  Fin )  ->  E. a  a :
( ( 1 ... A )  \  (
1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )
94, 7, 8sylancl 643 . 2  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. a 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) -1-1-> ( S  \  ( 1 ... N ) ) )
10 f1f1orn 5499 . . . . . . . . . 10  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  -> 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) -1-1-onto-> ran  a
)
1110adantl 452 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  a :
( ( 1 ... A )  \  (
1 ... N ) ) -1-1-onto-> ran  a )
12 f1oi 5527 . . . . . . . . . 10  |-  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )
1312a1i 10 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
14 incom 3374 . . . . . . . . . . 11  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  (
( 1 ... A
)  \  ( 1 ... N ) ) )
15 disjdif 3539 . . . . . . . . . . 11  |-  ( ( 1 ... N )  i^i  ( ( 1 ... A )  \ 
( 1 ... N
) ) )  =  (/)
1614, 15eqtri 2316 . . . . . . . . . 10  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)
1716a1i 10 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/) )
18 f1f 5453 . . . . . . . . . . . . . 14  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  -> 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) --> ( S  \  ( 1 ... N ) ) )
19 frn 5411 . . . . . . . . . . . . . 14  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) --> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  ( S 
\  ( 1 ... N ) ) )
2018, 19syl 15 . . . . . . . . . . . . 13  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  ( S 
\  ( 1 ... N ) ) )
2120adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ran  a  C_  ( S  \  (
1 ... N ) ) )
22 ssrin 3407 . . . . . . . . . . . 12  |-  ( ran  a  C_  ( S  \  ( 1 ... N
) )  ->  ( ran  a  i^i  (
1 ... N ) ) 
C_  ( ( S 
\  ( 1 ... N ) )  i^i  ( 1 ... N
) ) )
2321, 22syl 15 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  C_  ( ( S  \ 
( 1 ... N
) )  i^i  (
1 ... N ) ) )
24 incom 3374 . . . . . . . . . . . 12  |-  ( ( S  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  ( S  \  ( 1 ... N ) ) )
25 disjdif 3539 . . . . . . . . . . . 12  |-  ( ( 1 ... N )  i^i  ( S  \ 
( 1 ... N
) ) )  =  (/)
2624, 25eqtri 2316 . . . . . . . . . . 11  |-  ( ( S  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)
2723, 26syl6sseq 3237 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  C_  (/) )
28 ss0 3498 . . . . . . . . . 10  |-  ( ( ran  a  i^i  (
1 ... N ) ) 
C_  (/)  ->  ( ran  a  i^i  ( 1 ... N ) )  =  (/) )
2927, 28syl 15 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  =  (/) )
30 f1oun 5508 . . . . . . . . 9  |-  ( ( ( a : ( ( 1 ... A
)  \  ( 1 ... N ) ) -1-1-onto-> ran  a  /\  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )  /\  ( ( ( ( 1 ... A )  \  (
1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)  /\  ( ran  a  i^i  ( 1 ... N
) )  =  (/) ) )  ->  (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ran  a  u.  (
1 ... N ) ) )
3111, 13, 17, 29, 30syl22anc 1183 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-onto-> ( ran  a  u.  ( 1 ... N ) ) )
32 f1of1 5487 . . . . . . . 8  |-  ( ( a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ran  a  u.  (
1 ... N ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
3331, 32syl 15 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
34 uncom 3332 . . . . . . . . 9  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) )  =  ( ( 1 ... N )  u.  (
( 1 ... A
)  \  ( 1 ... N ) ) )
35 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  A  e.  ( ZZ>= `  N )
)
36 fzss2 10847 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... A
) )
3735, 36syl 15 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( 1 ... N )  C_  ( 1 ... A
) )
38 undif 3547 . . . . . . . . . 10  |-  ( ( 1 ... N ) 
C_  ( 1 ... A )  <->  ( (
1 ... N )  u.  ( ( 1 ... A )  \  (
1 ... N ) ) )  =  ( 1 ... A ) )
3937, 38sylib 188 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  u.  ( ( 1 ... A )  \  (
1 ... N ) ) )  =  ( 1 ... A ) )
4034, 39syl5eq 2340 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) )  =  ( 1 ... A
) )
41 f1eq2 5449 . . . . . . . 8  |-  ( ( ( ( 1 ... A )  \  (
1 ... N ) )  u.  ( 1 ... N ) )  =  ( 1 ... A
)  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) )
-1-1-> ( ran  a  u.  ( 1 ... N
) )  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) ) )
4240, 41syl 15 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) )
-1-1-> ( ran  a  u.  ( 1 ... N
) )  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) ) )
4333, 42mpbid 201 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
44 difss 3316 . . . . . . . . 9  |-  ( S 
\  ( 1 ... N ) )  C_  S
4520, 44syl6ss 3204 . . . . . . . 8  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  S )
4645adantl 452 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ran  a  C_  S )
47 simplrl 736 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( 1 ... N )  C_  S )
4846, 47unssd 3364 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  u.  ( 1 ... N ) ) 
C_  S )
49 f1ss 5458 . . . . . 6  |-  ( ( ( a  u.  (  _I  |`  ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  ( 1 ... N ) )  /\  ( ran  a  u.  ( 1 ... N
) )  C_  S
)  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
)
5043, 48, 49syl2anc 642 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
)
51 resundir 4986 . . . . . 6  |-  ( ( a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  ( ( a  |`  (
1 ... N ) )  u.  ( (  _I  |`  ( 1 ... N
) )  |`  (
1 ... N ) ) )
52 dmres 4992 . . . . . . . . . 10  |-  dom  (
a  |`  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  dom  a )
53 incom 3374 . . . . . . . . . . 11  |-  ( ( 1 ... N )  i^i  dom  a )  =  ( dom  a  i^i  ( 1 ... N
) )
54 f1dm 5457 . . . . . . . . . . . . . 14  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  dom  a  =  (
( 1 ... A
)  \  ( 1 ... N ) ) )
5554adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  dom  a  =  ( ( 1 ... A )  \  (
1 ... N ) ) )
5655ineq1d 3382 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( dom  a  i^i  ( 1 ... N ) )  =  ( ( ( 1 ... A )  \ 
( 1 ... N
) )  i^i  (
1 ... N ) ) )
5756, 16syl6eq 2344 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( dom  a  i^i  ( 1 ... N ) )  =  (/) )
5853, 57syl5eq 2340 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  i^i 
dom  a )  =  (/) )
5952, 58syl5eq 2340 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  dom  ( a  |`  ( 1 ... N
) )  =  (/) )
60 relres 4999 . . . . . . . . . 10  |-  Rel  (
a  |`  ( 1 ... N ) )
61 reldm0 4912 . . . . . . . . . 10  |-  ( Rel  ( a  |`  (
1 ... N ) )  ->  ( ( a  |`  ( 1 ... N
) )  =  (/)  <->  dom  ( a  |`  (
1 ... N ) )  =  (/) ) )
6260, 61ax-mp 8 . . . . . . . . 9  |-  ( ( a  |`  ( 1 ... N ) )  =  (/)  <->  dom  ( a  |`  ( 1 ... N
) )  =  (/) )
6359, 62sylibr 203 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  |`  ( 1 ... N
) )  =  (/) )
64 residm 5002 . . . . . . . . 9  |-  ( (  _I  |`  ( 1 ... N ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) )
6564a1i 10 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (  _I  |`  ( 1 ... N ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )
6663, 65uneq12d 3343 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  |`  ( 1 ... N ) )  u.  ( (  _I  |`  (
1 ... N ) )  |`  ( 1 ... N
) ) )  =  ( (/)  u.  (  _I  |`  ( 1 ... N ) ) ) )
67 uncom 3332 . . . . . . . 8  |-  ( (/)  u.  (  _I  |`  (
1 ... N ) ) )  =  ( (  _I  |`  ( 1 ... N ) )  u.  (/) )
68 un0 3492 . . . . . . . 8  |-  ( (  _I  |`  ( 1 ... N ) )  u.  (/) )  =  (  _I  |`  ( 1 ... N ) )
6967, 68eqtri 2316 . . . . . . 7  |-  ( (/)  u.  (  _I  |`  (
1 ... N ) ) )  =  (  _I  |`  ( 1 ... N
) )
7066, 69syl6eq 2344 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  |`  ( 1 ... N ) )  u.  ( (  _I  |`  (
1 ... N ) )  |`  ( 1 ... N
) ) )  =  (  _I  |`  (
1 ... N ) ) )
7151, 70syl5eq 2340 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )
72 vex 2804 . . . . . . 7  |-  a  e. 
_V
73 ovex 5899 . . . . . . . 8  |-  ( 1 ... N )  e. 
_V
74 resiexg 5013 . . . . . . . 8  |-  ( ( 1 ... N )  e.  _V  ->  (  _I  |`  ( 1 ... N ) )  e. 
_V )
7573, 74ax-mp 8 . . . . . . 7  |-  (  _I  |`  ( 1 ... N
) )  e.  _V
7672, 75unex 4534 . . . . . 6  |-  ( a  u.  (  _I  |`  (
1 ... N ) ) )  e.  _V
77 f1eq1 5448 . . . . . . 7  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( c : ( 1 ... A ) -1-1-> S  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
) )
78 reseq1 4965 . . . . . . . 8  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( c  |`  ( 1 ... N
) )  =  ( ( a  u.  (  _I  |`  ( 1 ... N ) ) )  |`  ( 1 ... N
) ) )
7978eqeq1d 2304 . . . . . . 7  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( (
c  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) )  <-> 
( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )
8077, 79anbi12d 691 . . . . . 6  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( (
c : ( 1 ... A ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  <->  ( ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S  /\  ( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) ) )
8176, 80spcev 2888 . . . . 5  |-  ( ( ( a  u.  (  _I  |`  ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> S  /\  ( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
8250, 71, 81syl2anc 642 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
8382ex 423 . . 3  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  E. c ( c : ( 1 ... A
) -1-1-> S  /\  (
c  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) ) )
8483exlimdv 1626 . 2  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  ( E. a  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) )  ->  E. c ( c : ( 1 ... A ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) ) )
859, 84mpd 14 1  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468    _I cid 4320   dom cdm 4705   ran crn 4706    |` cres 4707   Rel wrel 4710   -->wf 5267   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Fincfn 6879   1c1 8754   NN0cn0 9981   ZZ>=cuz 10246   ...cfz 10798
This theorem is referenced by:  eldioph2b  26945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799
  Copyright terms: Public domain W3C validator