Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmgm Unicode version

Theorem eldmgm 23709
Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
eldmgm  |-  ( A  e.  ( CC  \ 
( ZZ  \  NN ) )  <->  ( A  e.  CC  /\  -.  -u A  e.  NN0 ) )

Proof of Theorem eldmgm
StepHypRef Expression
1 eldif 3175 . 2  |-  ( A  e.  ( CC  \ 
( ZZ  \  NN ) )  <->  ( A  e.  CC  /\  -.  A  e.  ( ZZ  \  NN ) ) )
2 eldif 3175 . . . . 5  |-  ( A  e.  ( ZZ  \  NN )  <->  ( A  e.  ZZ  /\  -.  A  e.  NN ) )
3 elznn 10055 . . . . . . . 8  |-  ( A  e.  ZZ  <->  ( A  e.  RR  /\  ( A  e.  NN  \/  -u A  e.  NN0 ) ) )
43simprbi 450 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  e.  NN  \/  -u A  e.  NN0 )
)
54orcanai 879 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  A  e.  NN )  ->  -u A  e.  NN0 )
6 negneg 9113 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u -u A  =  A )
76adantr 451 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u A  e.  NN0 )  -> 
-u -u A  =  A )
8 nn0negz 10073 . . . . . . . . . 10  |-  ( -u A  e.  NN0  ->  -u -u A  e.  ZZ )
98adantl 452 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u A  e.  NN0 )  -> 
-u -u A  e.  ZZ )
107, 9eqeltrrd 2371 . . . . . . . 8  |-  ( ( A  e.  CC  /\  -u A  e.  NN0 )  ->  A  e.  ZZ )
1110ex 423 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A  e.  NN0  ->  A  e.  ZZ ) )
12 nngt0 9791 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  0  <  A )
13 nnre 9769 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  RR )
1413lt0neg2d 9359 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
0  <  A  <->  -u A  <  0 ) )
1512, 14mpbid 201 . . . . . . . . . 10  |-  ( A  e.  NN  ->  -u A  <  0 )
1613renegcld 9226 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  -u A  e.  RR )
17 0re 8854 . . . . . . . . . . 11  |-  0  e.  RR
18 ltnle 8918 . . . . . . . . . . 11  |-  ( (
-u A  e.  RR  /\  0  e.  RR )  ->  ( -u A  <  0  <->  -.  0  <_  -u A ) )
1916, 17, 18sylancl 643 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( -u A  <  0  <->  -.  0  <_  -u A ) )
2015, 19mpbid 201 . . . . . . . . 9  |-  ( A  e.  NN  ->  -.  0  <_  -u A )
21 nn0ge0 10007 . . . . . . . . 9  |-  ( -u A  e.  NN0  ->  0  <_ 
-u A )
2220, 21nsyl3 111 . . . . . . . 8  |-  ( -u A  e.  NN0  ->  -.  A  e.  NN )
2322a1i 10 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A  e.  NN0  ->  -.  A  e.  NN ) )
2411, 23jcad 519 . . . . . 6  |-  ( A  e.  CC  ->  ( -u A  e.  NN0  ->  ( A  e.  ZZ  /\  -.  A  e.  NN ) ) )
255, 24impbid2 195 . . . . 5  |-  ( A  e.  CC  ->  (
( A  e.  ZZ  /\ 
-.  A  e.  NN ) 
<-> 
-u A  e.  NN0 ) )
262, 25syl5bb 248 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  ( ZZ  \  NN )  <->  -u A  e. 
NN0 ) )
2726notbid 285 . . 3  |-  ( A  e.  CC  ->  ( -.  A  e.  ( ZZ  \  NN )  <->  -.  -u A  e.  NN0 ) )
2827pm5.32i 618 . 2  |-  ( ( A  e.  CC  /\  -.  A  e.  ( ZZ  \  NN ) )  <-> 
( A  e.  CC  /\ 
-.  -u A  e.  NN0 ) )
291, 28bitri 240 1  |-  ( A  e.  ( CC  \ 
( ZZ  \  NN ) )  <->  ( A  e.  CC  /\  -.  -u A  e.  NN0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    \ cdif 3162   class class class wbr 4039   CCcc 8751   RRcr 8752   0cc0 8753    < clt 8883    <_ cle 8884   -ucneg 9054   NNcn 9762   NN0cn0 9981   ZZcz 10040
This theorem is referenced by:  dmgmaddn0  23710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041
  Copyright terms: Public domain W3C validator