MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldprdi Unicode version

Theorem eldprdi 15253
Description: The domain of definition of the internal direct product, which states that  S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
eldprdi.1  |-  ( ph  ->  G dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
eldprdi.3  |-  ( ph  ->  F  e.  W )
Assertion
Ref Expression
eldprdi  |-  ( ph  ->  ( G  gsumg  F )  e.  ( G DProd  S ) )
Distinct variable groups:    h, F    h, i, G    h, I,
i    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    W( h, i)    .0. ( i)

Proof of Theorem eldprdi
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . 2  |-  ( ph  ->  G dom DProd  S )
2 eldprdi.3 . . 3  |-  ( ph  ->  F  e.  W )
3 eqid 2283 . . 3  |-  ( G 
gsumg  F )  =  ( G  gsumg  F )
4 oveq2 5866 . . . . 5  |-  ( f  =  F  ->  ( G  gsumg  f )  =  ( G  gsumg  F ) )
54eqeq2d 2294 . . . 4  |-  ( f  =  F  ->  (
( G  gsumg  F )  =  ( G  gsumg  f )  <->  ( G  gsumg  F )  =  ( G 
gsumg  F ) ) )
65rspcev 2884 . . 3  |-  ( ( F  e.  W  /\  ( G  gsumg  F )  =  ( G  gsumg  F ) )  ->  E. f  e.  W  ( G  gsumg  F )  =  ( G  gsumg  f ) )
72, 3, 6sylancl 643 . 2  |-  ( ph  ->  E. f  e.  W  ( G  gsumg  F )  =  ( G  gsumg  f ) )
8 eldprdi.2 . . 3  |-  ( ph  ->  dom  S  =  I )
9 eldprdi.0 . . . 4  |-  .0.  =  ( 0g `  G )
10 eldprdi.w . . . 4  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
119, 10eldprd 15239 . . 3  |-  ( dom 
S  =  I  -> 
( ( G  gsumg  F )  e.  ( G DProd  S
)  <->  ( G dom DProd  S  /\  E. f  e.  W  ( G  gsumg  F )  =  ( G  gsumg  f ) ) ) )
128, 11syl 15 . 2  |-  ( ph  ->  ( ( G  gsumg  F )  e.  ( G DProd  S
)  <->  ( G dom DProd  S  /\  E. f  e.  W  ( G  gsumg  F )  =  ( G  gsumg  f ) ) ) )
131, 7, 12mpbir2and 888 1  |-  ( ph  ->  ( G  gsumg  F )  e.  ( G DProd  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149   {csn 3640   class class class wbr 4023   `'ccnv 4688   dom cdm 4689   "cima 4692   ` cfv 5255  (class class class)co 5858   X_cixp 6817   Fincfn 6863   0gc0g 13400    gsumg cgsu 13401   DProd cdprd 15231
This theorem is referenced by:  dprdfsub  15256  dprdf11  15258  dprdsubg  15259  dprdub  15260  dpjidcl  15293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-ixp 6818  df-dprd 15233
  Copyright terms: Public domain W3C validator