MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldv Unicode version

Theorem eldv 19264
Description: The differentiable predicate. A function  F is differentiable at  B with derivative  C iff  F is defined in a neighborhood of  B and the difference quotient has limit  C at  B. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
dvval.t  |-  T  =  ( Kt  S )
dvval.k  |-  K  =  ( TopOpen ` fld )
eldv.g  |-  G  =  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) )
eldv.s  |-  ( ph  ->  S  C_  CC )
eldv.f  |-  ( ph  ->  F : A --> CC )
eldv.a  |-  ( ph  ->  A  C_  S )
Assertion
Ref Expression
eldv  |-  ( ph  ->  ( B ( S  _D  F ) C  <-> 
( B  e.  ( ( int `  T
) `  A )  /\  C  e.  ( G lim CC  B ) ) ) )
Distinct variable groups:    z, A    z, B    z, F    z, C    z, K    z, S
Allowed substitution hints:    ph( z)    T( z)    G( z)

Proof of Theorem eldv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldv.s . . . . 5  |-  ( ph  ->  S  C_  CC )
2 eldv.f . . . . 5  |-  ( ph  ->  F : A --> CC )
3 eldv.a . . . . 5  |-  ( ph  ->  A  C_  S )
4 dvval.t . . . . . 6  |-  T  =  ( Kt  S )
5 dvval.k . . . . . 6  |-  K  =  ( TopOpen ` fld )
64, 5dvfval 19263 . . . . 5  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
71, 2, 3, 6syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( S  _D  F )  =  U_ x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  /\  ( S  _D  F )  C_  (
( ( int `  T
) `  A )  X.  CC ) ) )
87simpld 445 . . 3  |-  ( ph  ->  ( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
98eleq2d 2363 . 2  |-  ( ph  ->  ( <. B ,  C >.  e.  ( S  _D  F )  <->  <. B ,  C >.  e.  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
10 df-br 4040 . . 3  |-  ( B ( S  _D  F
) C  <->  <. B ,  C >.  e.  ( S  _D  F ) )
1110bicomi 193 . 2  |-  ( <. B ,  C >.  e.  ( S  _D  F
)  <->  B ( S  _D  F ) C )
12 sneq 3664 . . . . . . 7  |-  ( x  =  B  ->  { x }  =  { B } )
1312difeq2d 3307 . . . . . 6  |-  ( x  =  B  ->  ( A  \  { x }
)  =  ( A 
\  { B }
) )
14 fveq2 5541 . . . . . . . 8  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
1514oveq2d 5890 . . . . . . 7  |-  ( x  =  B  ->  (
( F `  z
)  -  ( F `
 x ) )  =  ( ( F `
 z )  -  ( F `  B ) ) )
16 oveq2 5882 . . . . . . 7  |-  ( x  =  B  ->  (
z  -  x )  =  ( z  -  B ) )
1715, 16oveq12d 5892 . . . . . 6  |-  ( x  =  B  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) ) )
1813, 17mpteq12dv 4114 . . . . 5  |-  ( x  =  B  ->  (
z  e.  ( A 
\  { x }
)  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) )
19 eldv.g . . . . 5  |-  G  =  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) )
2018, 19syl6eqr 2346 . . . 4  |-  ( x  =  B  ->  (
z  e.  ( A 
\  { x }
)  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  G )
21 id 19 . . . 4  |-  ( x  =  B  ->  x  =  B )
2220, 21oveq12d 5892 . . 3  |-  ( x  =  B  ->  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  =  ( G lim CC  B
) )
2322opeliunxp2 4840 . 2  |-  ( <. B ,  C >.  e. 
U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  <->  ( B  e.  ( ( int `  T
) `  A )  /\  C  e.  ( G lim CC  B ) ) )
249, 11, 233bitr3g 278 1  |-  ( ph  ->  ( B ( S  _D  F ) C  <-> 
( B  e.  ( ( int `  T
) `  A )  /\  C  e.  ( G lim CC  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    \ cdif 3162    C_ wss 3165   {csn 3653   <.cop 3656   U_ciun 3921   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751    - cmin 9053    / cdiv 9439   ↾t crest 13341   TopOpenctopn 13342  ℂfldccnfld 16393   intcnt 16770   lim CC climc 19228    _D cdv 19229
This theorem is referenced by:  dvcl  19265  perfdvf  19269  dvreslem  19275  dvres2lem  19276  dvidlem  19281  dvcnp  19284  dvcnp2  19285  dvaddbr  19303  dvmulbr  19304  dvcobr  19311  dvcjbr  19314  dvrec  19320  dvcnvlem  19339  dveflem  19342  dvferm1  19348  dvferm2  19350  ftc1  19405  taylthlem1  19768  ulmdvlem3  19795  ftc1cnnc  25025
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-starv 13239  df-tset 13243  df-ple 13244  df-ds 13246  df-rest 13343  df-topn 13344  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cnp 16974  df-xms 17901  df-ms 17902  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator