Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleenn Unicode version

Theorem eleenn 24596
Description: If  A is in  ( EE `  N ), then 
N is a natural. (Contributed by Scott Fenton, 1-Jul-2013.)
Assertion
Ref Expression
eleenn  |-  ( A  e.  ( EE `  N )  ->  N  e.  NN )

Proof of Theorem eleenn
StepHypRef Expression
1 n0i 3473 . 2  |-  ( A  e.  ( EE `  N )  ->  -.  ( EE `  N )  =  (/) )
2 ovex 5899 . . . . 5  |-  ( RR 
^m  ( 1 ... n ) )  e. 
_V
3 df-ee 24591 . . . . 5  |-  EE  =  ( n  e.  NN  |->  ( RR  ^m  (
1 ... n ) ) )
42, 3dmmpti 5389 . . . 4  |-  dom  EE  =  NN
54eleq2i 2360 . . 3  |-  ( N  e.  dom  EE  <->  N  e.  NN )
6 ndmfv 5568 . . 3  |-  ( -.  N  e.  dom  EE  ->  ( EE `  N
)  =  (/) )
75, 6sylnbir 298 . 2  |-  ( -.  N  e.  NN  ->  ( EE `  N )  =  (/) )
81, 7nsyl2 119 1  |-  ( A  e.  ( EE `  N )  ->  N  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   (/)c0 3468   dom cdm 4705   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   RRcr 8752   1c1 8754   NNcn 9762   ...cfz 10798   EEcee 24588
This theorem is referenced by:  eleei  24597  eedimeq  24598  brbtwn  24599  brcgr  24600  eleesub  24611  eleesubd  24612  axsegconlem1  24617  axsegconlem8  24624  axeuclidlem  24662  brsegle  24803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5877  df-ee 24591
  Copyright terms: Public domain W3C validator