MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelsuc Unicode version

Theorem elelsuc 4594
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.)
Assertion
Ref Expression
elelsuc  |-  ( A  e.  B  ->  A  e.  suc  B )

Proof of Theorem elelsuc
StepHypRef Expression
1 orc 375 . 2  |-  ( A  e.  B  ->  ( A  e.  B  \/  A  =  B )
)
2 elsucg 4589 . 2  |-  ( A  e.  B  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
31, 2mpbird 224 1  |-  ( A  e.  B  ->  A  e.  suc  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    = wceq 1649    e. wcel 1717   suc csuc 4524
This theorem is referenced by:  suctr  4605  pssnn  7263  pwsdompw  8017  fin1a2lem4  8216  grur1a  8627  bnj570  28614
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-v 2901  df-un 3268  df-sn 3763  df-suc 4528
  Copyright terms: Public domain W3C validator