MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfg Structured version   Unicode version

Theorem elfg 17905
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfg  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  ( X filGen F )  <-> 
( A  C_  X  /\  E. x  e.  F  x  C_  A ) ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    X( x)

Proof of Theorem elfg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fgval 17904 . . 3  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  =  {
y  e.  ~P X  |  ( F  i^i  ~P y )  =/=  (/) } )
21eleq2d 2505 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  ( X filGen F )  <-> 
A  e.  { y  e.  ~P X  | 
( F  i^i  ~P y )  =/=  (/) } ) )
3 pweq 3804 . . . . . 6  |-  ( y  =  A  ->  ~P y  =  ~P A
)
43ineq2d 3544 . . . . 5  |-  ( y  =  A  ->  ( F  i^i  ~P y )  =  ( F  i^i  ~P A ) )
54neeq1d 2616 . . . 4  |-  ( y  =  A  ->  (
( F  i^i  ~P y )  =/=  (/)  <->  ( F  i^i  ~P A )  =/=  (/) ) )
65elrab 3094 . . 3  |-  ( A  e.  { y  e. 
~P X  |  ( F  i^i  ~P y
)  =/=  (/) }  <->  ( A  e.  ~P X  /\  ( F  i^i  ~P A )  =/=  (/) ) )
7 elfvdm 5759 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  X  e.  dom  fBas )
8 elpw2g 4365 . . . . 5  |-  ( X  e.  dom  fBas  ->  ( A  e.  ~P X  <->  A 
C_  X ) )
97, 8syl 16 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  ~P X  <->  A  C_  X
) )
10 elin 3532 . . . . . . . 8  |-  ( x  e.  ( F  i^i  ~P A )  <->  ( x  e.  F  /\  x  e.  ~P A ) )
11 vex 2961 . . . . . . . . . 10  |-  x  e. 
_V
1211elpw 3807 . . . . . . . . 9  |-  ( x  e.  ~P A  <->  x  C_  A
)
1312anbi2i 677 . . . . . . . 8  |-  ( ( x  e.  F  /\  x  e.  ~P A
)  <->  ( x  e.  F  /\  x  C_  A ) )
1410, 13bitri 242 . . . . . . 7  |-  ( x  e.  ( F  i^i  ~P A )  <->  ( x  e.  F  /\  x  C_  A ) )
1514exbii 1593 . . . . . 6  |-  ( E. x  x  e.  ( F  i^i  ~P A
)  <->  E. x ( x  e.  F  /\  x  C_  A ) )
16 n0 3639 . . . . . 6  |-  ( ( F  i^i  ~P A
)  =/=  (/)  <->  E. x  x  e.  ( F  i^i  ~P A ) )
17 df-rex 2713 . . . . . 6  |-  ( E. x  e.  F  x 
C_  A  <->  E. x
( x  e.  F  /\  x  C_  A ) )
1815, 16, 173bitr4i 270 . . . . 5  |-  ( ( F  i^i  ~P A
)  =/=  (/)  <->  E. x  e.  F  x  C_  A
)
1918a1i 11 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  ( ( F  i^i  ~P A )  =/=  (/)  <->  E. x  e.  F  x  C_  A ) )
209, 19anbi12d 693 . . 3  |-  ( F  e.  ( fBas `  X
)  ->  ( ( A  e.  ~P X  /\  ( F  i^i  ~P A )  =/=  (/) )  <->  ( A  C_  X  /\  E. x  e.  F  x  C_  A
) ) )
216, 20syl5bb 250 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  { y  e.  ~P X  |  ( F  i^i  ~P y )  =/=  (/) }  <->  ( A  C_  X  /\  E. x  e.  F  x  C_  A
) ) )
222, 21bitrd 246 1  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  ( X filGen F )  <-> 
( A  C_  X  /\  E. x  e.  F  x  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   {crab 2711    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   dom cdm 4880   ` cfv 5456  (class class class)co 6083   fBascfbas 16691   filGencfg 16692
This theorem is referenced by:  ssfg  17906  fgss  17907  fgss2  17908  fgfil  17909  elfilss  17910  fgcl  17912  fgabs  17913  fgtr  17924  trfg  17925  uffix  17955  elfm  17981  elfm2  17982  elfm3  17984  fbflim  18010  flffbas  18029  fclsbas  18055  isucn2  18311  metustOLD  18599  metust  18600  cfilucfilOLD  18601  cfilucfil  18602  metuelOLD  18609  metuel  18610  fgcfil  19226  fgmin  26401  filnetlem4  26412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-iota 5420  df-fun 5458  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-fg 16702
  Copyright terms: Public domain W3C validator