MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfg Unicode version

Theorem elfg 17668
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfg  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  ( X filGen F )  <-> 
( A  C_  X  /\  E. x  e.  F  x  C_  A ) ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    X( x)

Proof of Theorem elfg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fgval 17667 . . 3  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  =  {
y  e.  ~P X  |  ( F  i^i  ~P y )  =/=  (/) } )
21eleq2d 2425 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  ( X filGen F )  <-> 
A  e.  { y  e.  ~P X  | 
( F  i^i  ~P y )  =/=  (/) } ) )
3 pweq 3704 . . . . . 6  |-  ( y  =  A  ->  ~P y  =  ~P A
)
43ineq2d 3446 . . . . 5  |-  ( y  =  A  ->  ( F  i^i  ~P y )  =  ( F  i^i  ~P A ) )
54neeq1d 2534 . . . 4  |-  ( y  =  A  ->  (
( F  i^i  ~P y )  =/=  (/)  <->  ( F  i^i  ~P A )  =/=  (/) ) )
65elrab 2999 . . 3  |-  ( A  e.  { y  e. 
~P X  |  ( F  i^i  ~P y
)  =/=  (/) }  <->  ( A  e.  ~P X  /\  ( F  i^i  ~P A )  =/=  (/) ) )
7 elfvdm 5637 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  X  e.  dom  fBas )
8 elpw2g 4255 . . . . 5  |-  ( X  e.  dom  fBas  ->  ( A  e.  ~P X  <->  A 
C_  X ) )
97, 8syl 15 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  ~P X  <->  A  C_  X
) )
10 elin 3434 . . . . . . . 8  |-  ( x  e.  ( F  i^i  ~P A )  <->  ( x  e.  F  /\  x  e.  ~P A ) )
11 vex 2867 . . . . . . . . . 10  |-  x  e. 
_V
1211elpw 3707 . . . . . . . . 9  |-  ( x  e.  ~P A  <->  x  C_  A
)
1312anbi2i 675 . . . . . . . 8  |-  ( ( x  e.  F  /\  x  e.  ~P A
)  <->  ( x  e.  F  /\  x  C_  A ) )
1410, 13bitri 240 . . . . . . 7  |-  ( x  e.  ( F  i^i  ~P A )  <->  ( x  e.  F  /\  x  C_  A ) )
1514exbii 1582 . . . . . 6  |-  ( E. x  x  e.  ( F  i^i  ~P A
)  <->  E. x ( x  e.  F  /\  x  C_  A ) )
16 n0 3540 . . . . . 6  |-  ( ( F  i^i  ~P A
)  =/=  (/)  <->  E. x  x  e.  ( F  i^i  ~P A ) )
17 df-rex 2625 . . . . . 6  |-  ( E. x  e.  F  x 
C_  A  <->  E. x
( x  e.  F  /\  x  C_  A ) )
1815, 16, 173bitr4i 268 . . . . 5  |-  ( ( F  i^i  ~P A
)  =/=  (/)  <->  E. x  e.  F  x  C_  A
)
1918a1i 10 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  ( ( F  i^i  ~P A )  =/=  (/)  <->  E. x  e.  F  x  C_  A ) )
209, 19anbi12d 691 . . 3  |-  ( F  e.  ( fBas `  X
)  ->  ( ( A  e.  ~P X  /\  ( F  i^i  ~P A )  =/=  (/) )  <->  ( A  C_  X  /\  E. x  e.  F  x  C_  A
) ) )
216, 20syl5bb 248 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  { y  e.  ~P X  |  ( F  i^i  ~P y )  =/=  (/) }  <->  ( A  C_  X  /\  E. x  e.  F  x  C_  A
) ) )
222, 21bitrd 244 1  |-  ( F  e.  ( fBas `  X
)  ->  ( A  e.  ( X filGen F )  <-> 
( A  C_  X  /\  E. x  e.  F  x  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1541    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620   {crab 2623    i^i cin 3227    C_ wss 3228   (/)c0 3531   ~Pcpw 3701   dom cdm 4771   ` cfv 5337  (class class class)co 5945   fBascfbas 16471   filGencfg 16472
This theorem is referenced by:  ssfg  17669  fgss  17670  fgss2  17671  fgfil  17672  elfilss  17673  fgcl  17675  fgabs  17676  fgtr  17687  trfg  17688  uffix  17718  elfm  17744  elfm2  17745  elfm3  17747  fbflim  17773  flffbas  17792  fclsbas  17818  fgcfil  18801  metust  23602  cfilucfil  23603  metuel  23609  fgmin  25643  filnetlem4  25654
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-iota 5301  df-fun 5339  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-fg 16480
  Copyright terms: Public domain W3C validator