MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfiun Unicode version

Theorem elfiun 7199
Description: A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.)
Assertion
Ref Expression
elfiun  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <-> 
( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y   
x, K, y

Proof of Theorem elfiun
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2809 . . . 4  |-  ( A  e.  ( fi `  ( B  u.  C
) )  ->  A  e.  _V )
21adantl 452 . . 3  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  A  e.  ( fi `  ( B  u.  C ) ) )  ->  A  e.  _V )
3 simpll 730 . . 3  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  A  e.  ( fi `  ( B  u.  C ) ) )  ->  B  e.  D )
4 simplr 731 . . 3  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  A  e.  ( fi `  ( B  u.  C ) ) )  ->  C  e.  K )
52, 3, 43jca 1132 . 2  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  A  e.  ( fi `  ( B  u.  C ) ) )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) )
6 elex 2809 . . . . . 6  |-  ( A  e.  ( fi `  B )  ->  A  e.  _V )
763anim1i 1138 . . . . 5  |-  ( ( A  e.  ( fi
`  B )  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )
)
873expib 1154 . . . 4  |-  ( A  e.  ( fi `  B )  ->  (
( B  e.  D  /\  C  e.  K
)  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) ) )
9 elex 2809 . . . . . 6  |-  ( A  e.  ( fi `  C )  ->  A  e.  _V )
1093anim1i 1138 . . . . 5  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )
)
11103expib 1154 . . . 4  |-  ( A  e.  ( fi `  C )  ->  (
( B  e.  D  /\  C  e.  K
)  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) ) )
12 vex 2804 . . . . . . . . . 10  |-  x  e. 
_V
1312inex1 4171 . . . . . . . . 9  |-  ( x  i^i  y )  e. 
_V
14 eleq1 2356 . . . . . . . . 9  |-  ( A  =  ( x  i^i  y )  ->  ( A  e.  _V  <->  ( x  i^i  y )  e.  _V ) )
1513, 14mpbiri 224 . . . . . . . 8  |-  ( A  =  ( x  i^i  y )  ->  A  e.  _V )
1615a1i 10 . . . . . . 7  |-  ( ( x  e.  ( fi
`  B )  /\  y  e.  ( fi `  C ) )  -> 
( A  =  ( x  i^i  y )  ->  A  e.  _V ) )
1716rexlimivv 2685 . . . . . 6  |-  ( E. x  e.  ( fi
`  B ) E. y  e.  ( fi
`  C ) A  =  ( x  i^i  y )  ->  A  e.  _V )
18173anim1i 1138 . . . . 5  |-  ( ( E. x  e.  ( fi `  B ) E. y  e.  ( fi `  C ) A  =  ( x  i^i  y )  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )
)
19183expib 1154 . . . 4  |-  ( E. x  e.  ( fi
`  B ) E. y  e.  ( fi
`  C ) A  =  ( x  i^i  y )  ->  (
( B  e.  D  /\  C  e.  K
)  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) ) )
208, 11, 193jaoi 1245 . . 3  |-  ( ( A  e.  ( fi
`  B )  \/  A  e.  ( fi
`  C )  \/ 
E. x  e.  ( fi `  B ) E. y  e.  ( fi `  C ) A  =  ( x  i^i  y ) )  ->  ( ( B  e.  D  /\  C  e.  K )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) ) )
2120impcom 419 . 2  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  ( A  e.  ( fi `  B
)  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) )
22 simp1 955 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  A  e.  _V )
23 unexg 4537 . . . . . 6  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( B  u.  C
)  e.  _V )
24233adant1 973 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( B  u.  C
)  e.  _V )
25 elfi 7183 . . . . 5  |-  ( ( A  e.  _V  /\  ( B  u.  C
)  e.  _V )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <->  E. z  e.  ( ~P ( B  u.  C
)  i^i  Fin ) A  =  |^| z ) )
2622, 24, 25syl2anc 642 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <->  E. z  e.  ( ~P ( B  u.  C
)  i^i  Fin ) A  =  |^| z ) )
27 simpl1 958 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  A  e.  _V )
28 eleq1 2356 . . . . . . . 8  |-  ( A  =  |^| z  -> 
( A  e.  _V  <->  |^| z  e.  _V )
)
29 intex 4183 . . . . . . . 8  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
3028, 29syl6bbr 254 . . . . . . 7  |-  ( A  =  |^| z  -> 
( A  e.  _V  <->  z  =/=  (/) ) )
3127, 30syl5ibcom 211 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  ( A  =  |^| z  ->  z  =/=  (/) ) )
32 nne 2463 . . . . . . . . . . 11  |-  ( -.  ( z  i^i  B
)  =/=  (/)  <->  ( z  i^i  B )  =  (/) )
33 simp23 990 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  C  e.  K
)
34 simp1 955 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
B )  =  (/) )
35 simp3l 983 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  ( ~P ( B  u.  C )  i^i  Fin ) )
36 inss1 3402 . . . . . . . . . . . . . . . . . . 19  |-  ( ~P ( B  u.  C
)  i^i  Fin )  C_ 
~P ( B  u.  C )
3736sseli 3189 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  ->  z  e.  ~P ( B  u.  C ) )
38 elpwi 3646 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ~P ( B  u.  C )  -> 
z  C_  ( B  u.  C ) )
3937, 38syl 15 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  ->  z  C_  ( B  u.  C
) )
40 reldisj 3511 . . . . . . . . . . . . . . . . 17  |-  ( z 
C_  ( B  u.  C )  ->  (
( z  i^i  B
)  =  (/)  <->  z  C_  ( ( B  u.  C )  \  B
) ) )
4135, 39, 403syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( ( z  i^i  B )  =  (/) 
<->  z  C_  ( ( B  u.  C )  \  B ) ) )
4234, 41mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  C_  (
( B  u.  C
)  \  B )
)
43 uncom 3332 . . . . . . . . . . . . . . . . . 18  |-  ( B  u.  C )  =  ( C  u.  B
)
4443difeq1i 3303 . . . . . . . . . . . . . . . . 17  |-  ( ( B  u.  C ) 
\  B )  =  ( ( C  u.  B )  \  B
)
45 difun2 3546 . . . . . . . . . . . . . . . . 17  |-  ( ( C  u.  B ) 
\  B )  =  ( C  \  B
)
4644, 45eqtri 2316 . . . . . . . . . . . . . . . 16  |-  ( ( B  u.  C ) 
\  B )  =  ( C  \  B
)
47 difss 3316 . . . . . . . . . . . . . . . 16  |-  ( C 
\  B )  C_  C
4846, 47eqsstri 3221 . . . . . . . . . . . . . . 15  |-  ( ( B  u.  C ) 
\  B )  C_  C
4942, 48syl6ss 3204 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  C_  C
)
50 simp3r 984 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  =/=  (/) )
51 inss2 3403 . . . . . . . . . . . . . . . 16  |-  ( ~P ( B  u.  C
)  i^i  Fin )  C_ 
Fin
5251sseli 3189 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  ->  z  e.  Fin )
5335, 52syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  Fin )
54 elfir 7185 . . . . . . . . . . . . . 14  |-  ( ( C  e.  K  /\  ( z  C_  C  /\  z  =/=  (/)  /\  z  e.  Fin ) )  ->  |^| z  e.  ( fi `  C ) )
5533, 49, 50, 53, 54syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| z  e.  ( fi `  C ) )
56 3mix2 1125 . . . . . . . . . . . . 13  |-  ( |^| z  e.  ( fi `  C )  ->  ( |^| z  e.  ( fi `  B )  \/ 
|^| z  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
5755, 56syl 15 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
58573expib 1154 . . . . . . . . . . 11  |-  ( ( z  i^i  B )  =  (/)  ->  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
5932, 58sylbi 187 . . . . . . . . . 10  |-  ( -.  ( z  i^i  B
)  =/=  (/)  ->  (
( ( A  e. 
_V  /\  B  e.  D  /\  C  e.  K
)  /\  ( z  e.  ( ~P ( B  u.  C )  i^i 
Fin )  /\  z  =/=  (/) ) )  -> 
( |^| z  e.  ( fi `  B )  \/  |^| z  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
60 nne 2463 . . . . . . . . . . 11  |-  ( -.  ( z  i^i  C
)  =/=  (/)  <->  ( z  i^i  C )  =  (/) )
61 simp22 989 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  B  e.  D
)
62 simp1 955 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
C )  =  (/) )
63 simp3l 983 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  ( ~P ( B  u.  C )  i^i  Fin ) )
64 reldisj 3511 . . . . . . . . . . . . . . . . 17  |-  ( z 
C_  ( B  u.  C )  ->  (
( z  i^i  C
)  =  (/)  <->  z  C_  ( ( B  u.  C )  \  C
) ) )
6563, 39, 643syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( ( z  i^i  C )  =  (/) 
<->  z  C_  ( ( B  u.  C )  \  C ) ) )
6662, 65mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  C_  (
( B  u.  C
)  \  C )
)
67 difun2 3546 . . . . . . . . . . . . . . . 16  |-  ( ( B  u.  C ) 
\  C )  =  ( B  \  C
)
68 difss 3316 . . . . . . . . . . . . . . . 16  |-  ( B 
\  C )  C_  B
6967, 68eqsstri 3221 . . . . . . . . . . . . . . 15  |-  ( ( B  u.  C ) 
\  C )  C_  B
7066, 69syl6ss 3204 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  C_  B
)
71 simp3r 984 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  =/=  (/) )
7263, 52syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  Fin )
73 elfir 7185 . . . . . . . . . . . . . 14  |-  ( ( B  e.  D  /\  ( z  C_  B  /\  z  =/=  (/)  /\  z  e.  Fin ) )  ->  |^| z  e.  ( fi `  B ) )
7461, 70, 71, 72, 73syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| z  e.  ( fi `  B ) )
75 3mix1 1124 . . . . . . . . . . . . 13  |-  ( |^| z  e.  ( fi `  B )  ->  ( |^| z  e.  ( fi `  B )  \/ 
|^| z  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
7674, 75syl 15 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
77763expib 1154 . . . . . . . . . . 11  |-  ( ( z  i^i  C )  =  (/)  ->  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
7860, 77sylbi 187 . . . . . . . . . 10  |-  ( -.  ( z  i^i  C
)  =/=  (/)  ->  (
( ( A  e. 
_V  /\  B  e.  D  /\  C  e.  K
)  /\  ( z  e.  ( ~P ( B  u.  C )  i^i 
Fin )  /\  z  =/=  (/) ) )  -> 
( |^| z  e.  ( fi `  B )  \/  |^| z  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
79 simp22 989 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  B  e.  D
)
80 inss2 3403 . . . . . . . . . . . . . . 15  |-  ( z  i^i  B )  C_  B
8180a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
B )  C_  B
)
82 simp1l 979 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
B )  =/=  (/) )
83 simp3l 983 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  ( ~P ( B  u.  C )  i^i  Fin ) )
8483, 52syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  Fin )
85 inss1 3402 . . . . . . . . . . . . . . 15  |-  ( z  i^i  B )  C_  z
86 ssfi 7099 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Fin  /\  ( z  i^i  B
)  C_  z )  ->  ( z  i^i  B
)  e.  Fin )
8784, 85, 86sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
B )  e.  Fin )
88 elfir 7185 . . . . . . . . . . . . . 14  |-  ( ( B  e.  D  /\  ( ( z  i^i 
B )  C_  B  /\  ( z  i^i  B
)  =/=  (/)  /\  (
z  i^i  B )  e.  Fin ) )  ->  |^| ( z  i^i  B
)  e.  ( fi
`  B ) )
8979, 81, 82, 87, 88syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| ( z  i^i 
B )  e.  ( fi `  B ) )
90 simp23 990 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  C  e.  K
)
91 inss2 3403 . . . . . . . . . . . . . . 15  |-  ( z  i^i  C )  C_  C
9291a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
C )  C_  C
)
93 simp1r 980 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
C )  =/=  (/) )
94 inss1 3402 . . . . . . . . . . . . . . 15  |-  ( z  i^i  C )  C_  z
95 ssfi 7099 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Fin  /\  ( z  i^i  C
)  C_  z )  ->  ( z  i^i  C
)  e.  Fin )
9684, 94, 95sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
C )  e.  Fin )
97 elfir 7185 . . . . . . . . . . . . . 14  |-  ( ( C  e.  K  /\  ( ( z  i^i 
C )  C_  C  /\  ( z  i^i  C
)  =/=  (/)  /\  (
z  i^i  C )  e.  Fin ) )  ->  |^| ( z  i^i  C
)  e.  ( fi
`  C ) )
9890, 92, 93, 96, 97syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| ( z  i^i 
C )  e.  ( fi `  C ) )
99 indi 3428 . . . . . . . . . . . . . . . . 17  |-  ( z  i^i  ( B  u.  C ) )  =  ( ( z  i^i 
B )  u.  (
z  i^i  C )
)
100 df-ss 3179 . . . . . . . . . . . . . . . . . 18  |-  ( z 
C_  ( B  u.  C )  <->  ( z  i^i  ( B  u.  C
) )  =  z )
101100biimpi 186 . . . . . . . . . . . . . . . . 17  |-  ( z 
C_  ( B  u.  C )  ->  (
z  i^i  ( B  u.  C ) )  =  z )
10299, 101syl5reqr 2343 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  ( B  u.  C )  ->  z  =  ( ( z  i^i  B )  u.  ( z  i^i  C
) ) )
103102inteqd 3883 . . . . . . . . . . . . . . 15  |-  ( z 
C_  ( B  u.  C )  ->  |^| z  =  |^| ( ( z  i^i  B )  u.  ( z  i^i  C
) ) )
104 intun 3910 . . . . . . . . . . . . . . 15  |-  |^| (
( z  i^i  B
)  u.  ( z  i^i  C ) )  =  ( |^| (
z  i^i  B )  i^i  |^| ( z  i^i 
C ) )
105103, 104syl6eq 2344 . . . . . . . . . . . . . 14  |-  ( z 
C_  ( B  u.  C )  ->  |^| z  =  ( |^| (
z  i^i  B )  i^i  |^| ( z  i^i 
C ) ) )
10683, 39, 1053syl 18 . . . . . . . . . . . . 13  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| z  =  (
|^| ( z  i^i 
B )  i^i  |^| ( z  i^i  C
) ) )
107 ineq1 3376 . . . . . . . . . . . . . . 15  |-  ( x  =  |^| ( z  i^i  B )  -> 
( x  i^i  y
)  =  ( |^| ( z  i^i  B
)  i^i  y )
)
108107eqeq2d 2307 . . . . . . . . . . . . . 14  |-  ( x  =  |^| ( z  i^i  B )  -> 
( |^| z  =  ( x  i^i  y )  <->  |^| z  =  ( |^| ( z  i^i  B
)  i^i  y )
) )
109 ineq2 3377 . . . . . . . . . . . . . . 15  |-  ( y  =  |^| ( z  i^i  C )  -> 
( |^| ( z  i^i 
B )  i^i  y
)  =  ( |^| ( z  i^i  B
)  i^i  |^| ( z  i^i  C ) ) )
110109eqeq2d 2307 . . . . . . . . . . . . . 14  |-  ( y  =  |^| ( z  i^i  C )  -> 
( |^| z  =  (
|^| ( z  i^i 
B )  i^i  y
)  <->  |^| z  =  (
|^| ( z  i^i 
B )  i^i  |^| ( z  i^i  C
) ) ) )
111108, 110rspc2ev 2905 . . . . . . . . . . . . 13  |-  ( (
|^| ( z  i^i 
B )  e.  ( fi `  B )  /\  |^| ( z  i^i 
C )  e.  ( fi `  C )  /\  |^| z  =  (
|^| ( z  i^i 
B )  i^i  |^| ( z  i^i  C
) ) )  ->  E. x  e.  ( fi `  B ) E. y  e.  ( fi
`  C ) |^| z  =  ( x  i^i  y ) )
11289, 98, 106, 111syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  E. x  e.  ( fi `  B ) E. y  e.  ( fi `  C )
|^| z  =  ( x  i^i  y ) )
113 3mix3 1126 . . . . . . . . . . . 12  |-  ( E. x  e.  ( fi
`  B ) E. y  e.  ( fi
`  C ) |^| z  =  ( x  i^i  y )  ->  ( |^| z  e.  ( fi `  B )  \/ 
|^| z  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
114112, 113syl 15 . . . . . . . . . . 11  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
1151143expib 1154 . . . . . . . . . 10  |-  ( ( ( z  i^i  B
)  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  ->  (
( ( A  e. 
_V  /\  B  e.  D  /\  C  e.  K
)  /\  ( z  e.  ( ~P ( B  u.  C )  i^i 
Fin )  /\  z  =/=  (/) ) )  -> 
( |^| z  e.  ( fi `  B )  \/  |^| z  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
11659, 78, 115ecase 908 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
117 eleq1 2356 . . . . . . . . . 10  |-  ( A  =  |^| z  -> 
( A  e.  ( fi `  B )  <->  |^| z  e.  ( fi `  B ) ) )
118 eleq1 2356 . . . . . . . . . 10  |-  ( A  =  |^| z  -> 
( A  e.  ( fi `  C )  <->  |^| z  e.  ( fi `  C ) ) )
119 eqeq1 2302 . . . . . . . . . . 11  |-  ( A  =  |^| z  -> 
( A  =  ( x  i^i  y )  <->  |^| z  =  (
x  i^i  y )
) )
1201192rexbidv 2599 . . . . . . . . . 10  |-  ( A  =  |^| z  -> 
( E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y )  <->  E. x  e.  ( fi `  B ) E. y  e.  ( fi
`  C ) |^| z  =  ( x  i^i  y ) ) )
121117, 118, 1203orbi123d 1251 . . . . . . . . 9  |-  ( A  =  |^| z  -> 
( ( A  e.  ( fi `  B
)  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) )  <->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
122116, 121syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( A  = 
|^| z  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
123122expr 598 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  ( z  =/=  (/)  ->  ( A  =  |^| z  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) ) )
124123com23 72 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  ( A  =  |^| z  ->  (
z  =/=  (/)  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) ) )
12531, 124mpdd 36 . . . . 5  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  ( A  =  |^| z  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
126125rexlimdva 2680 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( E. z  e.  ( ~P ( B  u.  C )  i^i 
Fin ) A  = 
|^| z  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
12726, 126sylbid 206 . . 3  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  ->  ( A  e.  ( fi `  B
)  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
128 ssun1 3351 . . . . . . 7  |-  B  C_  ( B  u.  C
)
129 fiss 7193 . . . . . . 7  |-  ( ( ( B  u.  C
)  e.  _V  /\  B  C_  ( B  u.  C ) )  -> 
( fi `  B
)  C_  ( fi `  ( B  u.  C
) ) )
13023, 128, 129sylancl 643 . . . . . 6  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( fi `  B
)  C_  ( fi `  ( B  u.  C
) ) )
1311303adant1 973 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( fi `  B
)  C_  ( fi `  ( B  u.  C
) ) )
132131sseld 3192 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  B )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
133 ssun2 3352 . . . . . . 7  |-  C  C_  ( B  u.  C
)
134 fiss 7193 . . . . . . 7  |-  ( ( ( B  u.  C
)  e.  _V  /\  C  C_  ( B  u.  C ) )  -> 
( fi `  C
)  C_  ( fi `  ( B  u.  C
) ) )
13523, 133, 134sylancl 643 . . . . . 6  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( fi `  C
)  C_  ( fi `  ( B  u.  C
) ) )
1361353adant1 973 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( fi `  C
)  C_  ( fi `  ( B  u.  C
) ) )
137136sseld 3192 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  C )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
138131sseld 3192 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( x  e.  ( fi `  B )  ->  x  e.  ( fi `  ( B  u.  C ) ) ) )
139136sseld 3192 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( y  e.  ( fi `  C )  ->  y  e.  ( fi `  ( B  u.  C ) ) ) )
140138, 139anim12d 546 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( ( x  e.  ( fi `  B
)  /\  y  e.  ( fi `  C ) )  ->  ( x  e.  ( fi `  ( B  u.  C )
)  /\  y  e.  ( fi `  ( B  u.  C ) ) ) ) )
141 fiin 7191 . . . . . . 7  |-  ( ( x  e.  ( fi
`  ( B  u.  C ) )  /\  y  e.  ( fi `  ( B  u.  C
) ) )  -> 
( x  i^i  y
)  e.  ( fi
`  ( B  u.  C ) ) )
142 eleq1a 2365 . . . . . . 7  |-  ( ( x  i^i  y )  e.  ( fi `  ( B  u.  C
) )  ->  ( A  =  ( x  i^i  y )  ->  A  e.  ( fi `  ( B  u.  C )
) ) )
143141, 142syl 15 . . . . . 6  |-  ( ( x  e.  ( fi
`  ( B  u.  C ) )  /\  y  e.  ( fi `  ( B  u.  C
) ) )  -> 
( A  =  ( x  i^i  y )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
144140, 143syl6 29 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( ( x  e.  ( fi `  B
)  /\  y  e.  ( fi `  C ) )  ->  ( A  =  ( x  i^i  y )  ->  A  e.  ( fi `  ( B  u.  C )
) ) ) )
145144rexlimdvv 2686 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
146132, 137, 1453jaod 1246 . . 3  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( ( A  e.  ( fi `  B
)  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
147127, 146impbid 183 . 2  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <-> 
( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
1485, 21, 147pm5.21nd 868 1  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <-> 
( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   |^|cint 3878   ` cfv 5271   Fincfn 6879   ficfi 7180
This theorem is referenced by:  ordtbas2  16937  ordtbas  16938  fbunfip  17580  fmfnfmlem4  17668
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-fin 6883  df-fi 7181
  Copyright terms: Public domain W3C validator