MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm Unicode version

Theorem elfm 17658
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
elfm  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  ( A  C_  X  /\  E. x  e.  B  ( F " x )  C_  A
) ) )
Distinct variable groups:    x, B    x, C    x, F    x, X    x, A    x, Y

Proof of Theorem elfm
Dummy variables  t 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmval 17654 . . 3  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  =  ( X filGen ran  ( t  e.  B  |->  ( F " t
) ) ) )
21eleq2d 2363 . 2  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  A  e.  ( X filGen ran  ( t  e.  B  |->  ( F
" t ) ) ) ) )
3 eqid 2296 . . . . 5  |-  ran  (
t  e.  B  |->  ( F " t ) )  =  ran  (
t  e.  B  |->  ( F " t ) )
43fbasrn 17595 . . . 4  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y --> X  /\  X  e.  C )  ->  ran  ( t  e.  B  |->  ( F " t
) )  e.  (
fBas `  X )
)
543comr 1159 . . 3  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  ran  ( t  e.  B  |->  ( F " t
) )  e.  (
fBas `  X )
)
6 elfg 17582 . . 3  |-  ( ran  ( t  e.  B  |->  ( F " t
) )  e.  (
fBas `  X )  ->  ( A  e.  ( X filGen ran  ( t  e.  B  |->  ( F
" t ) ) )  <->  ( A  C_  X  /\  E. y  e. 
ran  ( t  e.  B  |->  ( F "
t ) ) y 
C_  A ) ) )
75, 6syl 15 . 2  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( X filGen ran  ( t  e.  B  |->  ( F
" t ) ) )  <->  ( A  C_  X  /\  E. y  e. 
ran  ( t  e.  B  |->  ( F "
t ) ) y 
C_  A ) ) )
8 simpr 447 . . . . . 6  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  x  e.  B )
9 eqid 2296 . . . . . 6  |-  ( F
" x )  =  ( F " x
)
10 imaeq2 5024 . . . . . . . 8  |-  ( t  =  x  ->  ( F " t )  =  ( F " x
) )
1110eqeq2d 2307 . . . . . . 7  |-  ( t  =  x  ->  (
( F " x
)  =  ( F
" t )  <->  ( F " x )  =  ( F " x ) ) )
1211rspcev 2897 . . . . . 6  |-  ( ( x  e.  B  /\  ( F " x )  =  ( F "
x ) )  ->  E. t  e.  B  ( F " x )  =  ( F "
t ) )
138, 9, 12sylancl 643 . . . . 5  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  E. t  e.  B  ( F " x )  =  ( F " t ) )
14 imassrn 5041 . . . . . . . 8  |-  ( F
" x )  C_  ran  F
15 frn 5411 . . . . . . . . . 10  |-  ( F : Y --> X  ->  ran  F  C_  X )
16153ad2ant3 978 . . . . . . . . 9  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  ran  F  C_  X )
1716adantr 451 . . . . . . . 8  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ran  F  C_  X )
1814, 17syl5ss 3203 . . . . . . 7  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ( F " x )  C_  X
)
19 simpl1 958 . . . . . . 7  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  X  e.  C )
20 ssexg 4176 . . . . . . 7  |-  ( ( ( F " x
)  C_  X  /\  X  e.  C )  ->  ( F " x
)  e.  _V )
2118, 19, 20syl2anc 642 . . . . . 6  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ( F " x )  e.  _V )
22 eqid 2296 . . . . . . 7  |-  ( t  e.  B  |->  ( F
" t ) )  =  ( t  e.  B  |->  ( F "
t ) )
2322elrnmpt 4942 . . . . . 6  |-  ( ( F " x )  e.  _V  ->  (
( F " x
)  e.  ran  (
t  e.  B  |->  ( F " t ) )  <->  E. t  e.  B  ( F " x )  =  ( F "
t ) ) )
2421, 23syl 15 . . . . 5  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ( ( F " x )  e. 
ran  ( t  e.  B  |->  ( F "
t ) )  <->  E. t  e.  B  ( F " x )  =  ( F " t ) ) )
2513, 24mpbird 223 . . . 4  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ( F " x )  e.  ran  ( t  e.  B  |->  ( F " t
) ) )
2610cbvmptv 4127 . . . . . . 7  |-  ( t  e.  B  |->  ( F
" t ) )  =  ( x  e.  B  |->  ( F "
x ) )
2726elrnmpt 4942 . . . . . 6  |-  ( y  e.  ran  ( t  e.  B  |->  ( F
" t ) )  ->  ( y  e. 
ran  ( t  e.  B  |->  ( F "
t ) )  <->  E. x  e.  B  y  =  ( F " x ) ) )
2827ibi 232 . . . . 5  |-  ( y  e.  ran  ( t  e.  B  |->  ( F
" t ) )  ->  E. x  e.  B  y  =  ( F " x ) )
2928adantl 452 . . . 4  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  y  e.  ran  ( t  e.  B  |->  ( F " t
) ) )  ->  E. x  e.  B  y  =  ( F " x ) )
30 simpr 447 . . . . 5  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  y  =  ( F " x ) )  ->  y  =  ( F " x ) )
3130sseq1d 3218 . . . 4  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  y  =  ( F " x ) )  ->  ( y  C_  A  <->  ( F "
x )  C_  A
) )
3225, 29, 31rexxfrd 4565 . . 3  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( E. y  e. 
ran  ( t  e.  B  |->  ( F "
t ) ) y 
C_  A  <->  E. x  e.  B  ( F " x )  C_  A
) )
3332anbi2d 684 . 2  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( A  C_  X  /\  E. y  e. 
ran  ( t  e.  B  |->  ( F "
t ) ) y 
C_  A )  <->  ( A  C_  X  /\  E. x  e.  B  ( F " x )  C_  A
) ) )
342, 7, 333bitrd 270 1  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  ( A  C_  X  /\  E. x  e.  B  ( F " x )  C_  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557   _Vcvv 2801    C_ wss 3165    e. cmpt 4093   ran crn 4706   "cima 4708   -->wf 5267   ` cfv 5271  (class class class)co 5874   fBascfbas 17534   filGencfg 17535    FilMap cfm 17644
This theorem is referenced by:  elfm2  17659  fmfg  17660  rnelfm  17664  fmfnfmlem1  17665  fmfnfm  17669  fmco  17672  flfnei  17702  isflf  17704  isfcf  17745  filnetlem4  26433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-fbas 17536  df-fg 17537  df-fm 17649
  Copyright terms: Public domain W3C validator