MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm3 Unicode version

Theorem elfm3 17645
Description: An alternate formulation of elementhood in a mapping filter that requires  F to be onto. (Contributed by Jeff Hankins, 1-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l  |-  L  =  ( Y filGen B )
Assertion
Ref Expression
elfm3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
Distinct variable groups:    x, B    x, F    x, X    x, A    x, L    x, Y

Proof of Theorem elfm3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 5456 . . . 4  |-  ( F : Y -onto-> X  -> 
( F " Y
)  =  X )
21adantl 452 . . 3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( F " Y )  =  X )
3 fofun 5452 . . . 4  |-  ( F : Y -onto-> X  ->  Fun  F )
4 elfvdm 5554 . . . 4  |-  ( B  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
5 funimaexg 5329 . . . 4  |-  ( ( Fun  F  /\  Y  e.  dom  fBas )  ->  ( F " Y )  e. 
_V )
63, 4, 5syl2anr 464 . . 3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( F " Y )  e. 
_V )
72, 6eqeltrrd 2358 . 2  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  X  e.  _V )
8 fof 5451 . . . . 5  |-  ( F : Y -onto-> X  ->  F : Y --> X )
9 elfm2.l . . . . . 6  |-  L  =  ( Y filGen B )
109elfm2 17643 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A
) ) )
118, 10syl3an3 1217 . . . 4  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A
) ) )
12 fgcl 17573 . . . . . . . . . . . . 13  |-  ( B  e.  ( fBas `  Y
)  ->  ( Y filGen B )  e.  ( Fil `  Y ) )
139, 12syl5eqel 2367 . . . . . . . . . . . 12  |-  ( B  e.  ( fBas `  Y
)  ->  L  e.  ( Fil `  Y ) )
14133ad2ant2 977 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  L  e.  ( Fil `  Y
) )
1514ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  L  e.  ( Fil `  Y ) )
16 simprl 732 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
y  e.  L )
17 cnvimass 5033 . . . . . . . . . . . . 13  |-  ( `' F " A ) 
C_  dom  F
18 fofn 5453 . . . . . . . . . . . . . 14  |-  ( F : Y -onto-> X  ->  F  Fn  Y )
19 fndm 5343 . . . . . . . . . . . . . 14  |-  ( F  Fn  Y  ->  dom  F  =  Y )
2018, 19syl 15 . . . . . . . . . . . . 13  |-  ( F : Y -onto-> X  ->  dom  F  =  Y )
2117, 20syl5sseq 3226 . . . . . . . . . . . 12  |-  ( F : Y -onto-> X  -> 
( `' F " A )  C_  Y
)
22213ad2ant3 978 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( `' F " A ) 
C_  Y )
2322ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
( `' F " A )  C_  Y
)
2433ad2ant3 978 . . . . . . . . . . . . . 14  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  Fun  F )
2524ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  Fun  F )
269eleq2i 2347 . . . . . . . . . . . . . . . 16  |-  ( y  e.  L  <->  y  e.  ( Y filGen B ) )
27 elfg 17566 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  ( fBas `  Y
)  ->  ( y  e.  ( Y filGen B )  <-> 
( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
28273ad2ant2 977 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
y  e.  ( Y
filGen B )  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
2928adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  (
y  e.  ( Y
filGen B )  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
3026, 29syl5bb 248 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  (
y  e.  L  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
3130simprbda 606 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  y  C_  Y )
32 sseq2 3200 . . . . . . . . . . . . . . . . . 18  |-  ( dom 
F  =  Y  -> 
( y  C_  dom  F  <-> 
y  C_  Y )
)
3332biimpar 471 . . . . . . . . . . . . . . . . 17  |-  ( ( dom  F  =  Y  /\  y  C_  Y
)  ->  y  C_  dom  F )
3420, 33sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( F : Y -onto-> X  /\  y  C_  Y )  ->  y  C_  dom  F )
35343ad2antl3 1119 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  y  C_  Y )  ->  y  C_ 
dom  F )
3635adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  C_  Y )  ->  y  C_ 
dom  F )
3731, 36syldan 456 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  y  C_ 
dom  F )
38 funimass3 5641 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  y  C_ 
dom  F )  -> 
( ( F "
y )  C_  A  <->  y 
C_  ( `' F " A ) ) )
3925, 37, 38syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  (
( F " y
)  C_  A  <->  y  C_  ( `' F " A ) ) )
4039biimpd 198 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  (
( F " y
)  C_  A  ->  y 
C_  ( `' F " A ) ) )
4140impr 602 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
y  C_  ( `' F " A ) )
42 filss 17548 . . . . . . . . . 10  |-  ( ( L  e.  ( Fil `  Y )  /\  (
y  e.  L  /\  ( `' F " A ) 
C_  Y  /\  y  C_  ( `' F " A ) ) )  ->  ( `' F " A )  e.  L
)
4315, 16, 23, 41, 42syl13anc 1184 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
( `' F " A )  e.  L
)
44 foimacnv 5490 . . . . . . . . . . . 12  |-  ( ( F : Y -onto-> X  /\  A  C_  X )  ->  ( F "
( `' F " A ) )  =  A )
4544eqcomd 2288 . . . . . . . . . . 11  |-  ( ( F : Y -onto-> X  /\  A  C_  X )  ->  A  =  ( F " ( `' F " A ) ) )
46453ad2antl3 1119 . . . . . . . . . 10  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  A  =  ( F "
( `' F " A ) ) )
4746adantr 451 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  A  =  ( F " ( `' F " A ) ) )
48 imaeq2 5008 . . . . . . . . . . 11  |-  ( x  =  ( `' F " A )  ->  ( F " x )  =  ( F " ( `' F " A ) ) )
4948eqeq2d 2294 . . . . . . . . . 10  |-  ( x  =  ( `' F " A )  ->  ( A  =  ( F " x )  <->  A  =  ( F " ( `' F " A ) ) ) )
5049rspcev 2884 . . . . . . . . 9  |-  ( ( ( `' F " A )  e.  L  /\  A  =  ( F " ( `' F " A ) ) )  ->  E. x  e.  L  A  =  ( F " x ) )
5143, 47, 50syl2anc 642 . . . . . . . 8  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  E. x  e.  L  A  =  ( F " x ) )
5251exp32 588 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  (
y  e.  L  -> 
( ( F "
y )  C_  A  ->  E. x  e.  L  A  =  ( F " x ) ) ) )
5352rexlimdv 2666 . . . . . 6  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  ( E. y  e.  L  ( F " y ) 
C_  A  ->  E. x  e.  L  A  =  ( F " x ) ) )
5453expimpd 586 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
( A  C_  X  /\  E. y  e.  L  ( F " y ) 
C_  A )  ->  E. x  e.  L  A  =  ( F " x ) ) )
55 simprr 733 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  A  =  ( F " x ) )
56 imassrn 5025 . . . . . . . . . 10  |-  ( F
" x )  C_  ran  F
57 forn 5454 . . . . . . . . . . . 12  |-  ( F : Y -onto-> X  ->  ran  F  =  X )
58573ad2ant3 978 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ran  F  =  X )
5958adantr 451 . . . . . . . . . 10  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ran  F  =  X )
6056, 59syl5sseq 3226 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ( F "
x )  C_  X
)
6155, 60eqsstrd 3212 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  A  C_  X
)
62 eqimss2 3231 . . . . . . . . . 10  |-  ( A  =  ( F "
x )  ->  ( F " x )  C_  A )
63 imaeq2 5008 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F " y )  =  ( F " x
) )
6463sseq1d 3205 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( F " y
)  C_  A  <->  ( F " x )  C_  A
) )
6564rspcev 2884 . . . . . . . . . 10  |-  ( ( x  e.  L  /\  ( F " x ) 
C_  A )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6662, 65sylan2 460 . . . . . . . . 9  |-  ( ( x  e.  L  /\  A  =  ( F " x ) )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6766adantl 452 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6861, 67jca 518 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ( A  C_  X  /\  E. y  e.  L  ( F "
y )  C_  A
) )
6968exp32 588 . . . . . 6  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
x  e.  L  -> 
( A  =  ( F " x )  ->  ( A  C_  X  /\  E. y  e.  L  ( F "
y )  C_  A
) ) ) )
7069rexlimdv 2666 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( E. x  e.  L  A  =  ( F " x )  ->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A ) ) )
7154, 70impbid 183 . . . 4  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
( A  C_  X  /\  E. y  e.  L  ( F " y ) 
C_  A )  <->  E. x  e.  L  A  =  ( F " x ) ) )
7211, 71bitrd 244 . . 3  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
73723coml 1158 . 2  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X  /\  X  e. 
_V )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
747, 73mpd3an3 1278 1  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544   _Vcvv 2788    C_ wss 3152   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858   fBascfbas 17518   filGencfg 17519   Filcfil 17540    FilMap cfm 17628
This theorem is referenced by:  fmid  17655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633
  Copyright terms: Public domain W3C validator