Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsg Unicode version

Theorem elfunsg 24526
Description: Closed form of elfuns 24525. (Contributed by Scott Fenton, 2-May-2014.)
Assertion
Ref Expression
elfunsg  |-  ( F  e.  V  ->  ( F  e.  Funs  <->  Fun  F ) )

Proof of Theorem elfunsg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eleq1 2356 . 2  |-  ( f  =  F  ->  (
f  e.  Funs  <->  F  e.  Funs ) )
2 funeq 5290 . 2  |-  ( f  =  F  ->  ( Fun  f  <->  Fun  F ) )
3 vex 2804 . . 3  |-  f  e. 
_V
43elfuns 24525 . 2  |-  ( f  e.  Funs  <->  Fun  f )
51, 2, 4vtoclbg 2857 1  |-  ( F  e.  V  ->  ( F  e.  Funs  <->  Fun  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    e. wcel 1696   Fun wfun 5265   Funscfuns 24451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-eprel 4321  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-1st 6138  df-2nd 6139  df-txp 24466  df-fix 24471  df-funs 24473
  Copyright terms: Public domain W3C validator