MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzel1 Unicode version

Theorem elfzel1 10797
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel1  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )

Proof of Theorem elfzel1
StepHypRef Expression
1 elfzuz 10794 . 2  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
2 eluzel2 10235 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 15 1  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   ` cfv 5255  (class class class)co 5858   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782
This theorem is referenced by:  fzdisj  10817  fzrev2i  10848  fzrev3  10849  uznfz  10865  bcp1nk  11329  clscnc  26010  acongrep  27067  fzmaxdif  27068  acongeq  27070  jm2.23  27089  stoweidlem34  27783
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-neg 9040  df-z 10025  df-uz 10231  df-fz 10783
  Copyright terms: Public domain W3C validator