MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzel2 Unicode version

Theorem elfzel2 10796
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel2  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )

Proof of Theorem elfzel2
StepHypRef Expression
1 elfzuz3 10795 . 2  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
2 eluzelz 10238 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ZZ )
31, 2syl 15 1  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   ` cfv 5255  (class class class)co 5858   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782
This theorem is referenced by:  elfz1eq  10807  fzdisj  10817  fznn0sub2  10825  fzssp1  10834  fzp1disj  10843  fzrev2i  10848  fzrev3  10849  fznuz  10864  fzofzp1b  10917  bcm1k  11327  bcp1nk  11329  spllen  11469  fsum0diag2  12245  pntpbnd1  20735  psgnunilem2  27418  stoweidlem34  27783
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-neg 9040  df-z 10025  df-uz 10231  df-fz 10783
  Copyright terms: Public domain W3C validator