MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzel2 Structured version   Unicode version

Theorem elfzel2 11062
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel2  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )

Proof of Theorem elfzel2
StepHypRef Expression
1 elfzuz3 11061 . 2  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
2 eluzelz 10501 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ZZ )
31, 2syl 16 1  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1726   ` cfv 5457  (class class class)co 6084   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048
This theorem is referenced by:  elfz1eq  11073  fzdisj  11083  fznn0sub2  11091  fzssp1  11100  fzp1disj  11110  fzrev2i  11115  fzrev3  11116  fznuz  11134  fzofzp1b  11195  bcm1k  11611  bcp1nk  11613  spllen  11788  fsum0diag2  12571  pntpbnd1  21285  fallfacval3  25333  fallfacval4  25364  psgnunilem2  27409  stoweidlem34  27773  2elfz2melfz  28140  swrd0swrd  28231  swrdccatin2lem1  28240  swrdccatin12lem3  28246  2cshw2lem1  28286  cshweqdif2  28304  cshwssizelem2  28315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-neg 9299  df-z 10288  df-uz 10494  df-fz 11049
  Copyright terms: Public domain W3C validator