MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzm1b Structured version   Unicode version

Theorem elfzm1b 11117
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzm1b  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )

Proof of Theorem elfzm1b
StepHypRef Expression
1 1z 10303 . . . 4  |-  1  e.  ZZ
2 fzsubel 11080 . . . . 5  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
31, 2mpanl1 662 . . . 4  |-  ( ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  ->  ( K  e.  ( 1 ... N
)  <->  ( K  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
41, 3mpanr2 666 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
5 1m1e0 10060 . . . . 5  |-  ( 1  -  1 )  =  0
65oveq1i 6083 . . . 4  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
76eleq2i 2499 . . 3  |-  ( ( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) )  <->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
84, 7syl6bb 253 . 2  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
98ancoms 440 1  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725  (class class class)co 6073   0cc0 8982   1c1 8983    - cmin 9283   ZZcz 10274   ...cfz 11035
This theorem is referenced by:  elfzom1b  11183  bcm1k  11598  bcpasc  11604  cvmliftlem7  24970
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-fz 11036
  Copyright terms: Public domain W3C validator