MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuz2 Unicode version

Theorem elfzuz2 10848
Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz2  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)

Proof of Theorem elfzuz2
StepHypRef Expression
1 elfzuzb 10839 . 2  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
2 eqid 2316 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
32uztrn2 10292 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  N  e.  ( ZZ>= `  M )
)
41, 3sylbi 187 1  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1701   ` cfv 5292  (class class class)co 5900   ZZ>=cuz 10277   ...cfz 10829
This theorem is referenced by:  elfzle3  10849  fzn0  10856  fzopth  10875  bcm1k  11374  bcpasc  11380  seqcoll  11448  splid  11515  spllen  11516  gexcl3  14947  dvn2bss  19332  pserdvlem2  19857  ppinprm  20443  chtnprm  20445  chpval2  20510  chpchtsum  20511  lgsdir2lem2  20616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-pre-lttri 8856  ax-pre-lttrn 8857
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-neg 9085  df-z 10072  df-uz 10278  df-fz 10830
  Copyright terms: Public domain W3C validator