MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuzb Structured version   Unicode version

Theorem elfzuzb 11045
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuzb  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )

Proof of Theorem elfzuzb
StepHypRef Expression
1 df-3an 938 . . 3  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( (
( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( M  <_  K  /\  K  <_  N ) ) )
2 an6 1263 . . 3  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) )  <-> 
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
3 df-3an 938 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
4 anandir 803 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) 
<->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) ) )
5 ancom 438 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  <->  ( K  e.  ZZ  /\  N  e.  ZZ )
)
65anbi2i 676 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) ) )
73, 4, 63bitri 263 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) ) )
87anbi1i 677 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( M  <_  K  /\  K  <_  N ) ) )
91, 2, 83bitr4ri 270 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) ) )
10 elfz2 11042 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
11 eluz2 10486 . . 3  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K ) )
12 eluz2 10486 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) )
1311, 12anbi12i 679 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) ) )
149, 10, 133bitr4i 269 1  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073    <_ cle 9113   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035
This theorem is referenced by:  eluzfz  11046  elfzuz  11047  elfzuz3  11048  elfzuz2  11054  peano2fzr  11061  fzsplit2  11068  elfz2nn0  11074  fzass4  11082  fzss1  11083  fzss2  11084  fzp1elp1  11092  fznn  11107  elfzofz  11146  fzofzp1b  11182  fzosplitsn  11187  seqcl2  11333  seqfveq2  11337  monoord  11345  seqid2  11361  bcn1  11596  fz1isolem  11702  seqcoll  11704  swrdccat1  11766  swrdccat2  11767  spllen  11775  splfv2a  11777  splval2  11778  swrds1  11779  caubnd  12154  isercolllem2  12451  isercolllem3  12452  summolem2a  12501  fsum0diag2  12558  climcndslem1  12621  mertenslem1  12653  vdwlem2  13342  vdwlem8  13348  gexcl3  15213  efginvrel2  15351  efgredleme  15367  efgcpbllemb  15379  1stckgenlem  17577  imasdsf1olem  18395  iscmet3lem1  19236  dvtaylp  20278  mtest  20312  ppisval  20878  ppisval2  20879  chtdif  20933  ppidif  20938  logfaclbnd  20998  bposlem4  21063  dchrisumlem2  21176  pntpbnd1  21272  eupath2lem3  21693  fzsplit3  24142  prodmolem2a  25252  mettrifi  26454  fzosplitsnm1  28114
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-neg 9286  df-z 10275  df-uz 10481  df-fz 11036
  Copyright terms: Public domain W3C validator