MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgch Unicode version

Theorem elgch 8260
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elgch  |-  ( A  e.  V  ->  ( A  e. GCH  <->  ( A  e. 
Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem elgch
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-gch 8259 . . . 4  |- GCH  =  ( Fin  u.  { y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } )
21eleq2i 2360 . . 3  |-  ( A  e. GCH 
<->  A  e.  ( Fin 
u.  { y  | 
A. x  -.  (
y  ~<  x  /\  x  ~<  ~P y ) } ) )
3 elun 3329 . . 3  |-  ( A  e.  ( Fin  u.  { y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } )  <->  ( A  e.  Fin  \/  A  e. 
{ y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } ) )
42, 3bitri 240 . 2  |-  ( A  e. GCH 
<->  ( A  e.  Fin  \/  A  e.  { y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } ) )
5 breq1 4042 . . . . . . 7  |-  ( y  =  A  ->  (
y  ~<  x  <->  A  ~<  x ) )
6 pweq 3641 . . . . . . . 8  |-  ( y  =  A  ->  ~P y  =  ~P A
)
76breq2d 4051 . . . . . . 7  |-  ( y  =  A  ->  (
x  ~<  ~P y  <->  x  ~<  ~P A ) )
85, 7anbi12d 691 . . . . . 6  |-  ( y  =  A  ->  (
( y  ~<  x  /\  x  ~<  ~P y
)  <->  ( A  ~<  x  /\  x  ~<  ~P A
) ) )
98notbid 285 . . . . 5  |-  ( y  =  A  ->  ( -.  ( y  ~<  x  /\  x  ~<  ~P y
)  <->  -.  ( A  ~<  x  /\  x  ~<  ~P A ) ) )
109albidv 1615 . . . 4  |-  ( y  =  A  ->  ( A. x  -.  (
y  ~<  x  /\  x  ~<  ~P y )  <->  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) )
1110elabg 2928 . . 3  |-  ( A  e.  V  ->  ( A  e.  { y  |  A. x  -.  (
y  ~<  x  /\  x  ~<  ~P y ) }  <->  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A ) ) )
1211orbi2d 682 . 2  |-  ( A  e.  V  ->  (
( A  e.  Fin  \/  A  e.  { y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } )  <->  ( A  e.  Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) ) )
134, 12syl5bb 248 1  |-  ( A  e.  V  ->  ( A  e. GCH  <->  ( A  e. 
Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   {cab 2282    u. cun 3163   ~Pcpw 3638   class class class wbr 4039    ~< csdm 6878   Fincfn 6879  GCHcgch 8258
This theorem is referenced by:  gchi  8262  engch  8266  hargch  8315  alephgch  8316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-gch 8259
  Copyright terms: Public domain W3C validator