MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elghomlem2 Unicode version

Theorem elghomlem2 21799
Description: Lemma for elghom 21800. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
elghomlem1.1  |-  S  =  { f  |  ( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `  (
x G y ) ) ) }
Assertion
Ref Expression
elghomlem2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
Distinct variable groups:    x, f,
y, F    f, G, x, y    f, H, x, y
Allowed substitution hints:    S( x, y, f)

Proof of Theorem elghomlem2
StepHypRef Expression
1 elghomlem1.1 . . . 4  |-  S  =  { f  |  ( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `  (
x G y ) ) ) }
21elghomlem1 21798 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( G GrpOpHom  H )  =  S )
32eleq2d 2455 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  F  e.  S
) )
4 elex 2908 . . . . 5  |-  ( F  e.  S  ->  F  e.  _V )
5 feq1 5517 . . . . . . . 8  |-  ( f  =  F  ->  (
f : ran  G --> ran  H  <->  F : ran  G --> ran  H ) )
6 fveq1 5668 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
7 fveq1 5668 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
86, 7oveq12d 6039 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( f `  x
) H ( f `
 y ) )  =  ( ( F `
 x ) H ( F `  y
) ) )
9 fveq1 5668 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  ( x G y ) )  =  ( F `  ( x G y ) ) )
108, 9eqeq12d 2402 . . . . . . . . 9  |-  ( f  =  F  ->  (
( ( f `  x ) H ( f `  y ) )  =  ( f `
 ( x G y ) )  <->  ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) ) ) )
11102ralbidv 2692 . . . . . . . 8  |-  ( f  =  F  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `
 ( x G y ) )  <->  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) ) ) )
125, 11anbi12d 692 . . . . . . 7  |-  ( f  =  F  ->  (
( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x
) H ( f `
 y ) )  =  ( f `  ( x G y ) ) )  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
1312, 1elab2g 3028 . . . . . 6  |-  ( F  e.  _V  ->  ( F  e.  S  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
1413biimpd 199 . . . . 5  |-  ( F  e.  _V  ->  ( F  e.  S  ->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) ) ) ) )
154, 14mpcom 34 . . . 4  |-  ( F  e.  S  ->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) )
16 rnexg 5072 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ran  G  e. 
_V )
17 fex 5909 . . . . . . . 8  |-  ( ( F : ran  G --> ran  H  /\  ran  G  e.  _V )  ->  F  e.  _V )
1817expcom 425 . . . . . . 7  |-  ( ran 
G  e.  _V  ->  ( F : ran  G --> ran  H  ->  F  e.  _V ) )
1916, 18syl 16 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( F : ran  G --> ran  H  ->  F  e.  _V )
)
2019adantrd 455 . . . . 5  |-  ( G  e.  GrpOp  ->  ( ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) )  ->  F  e.  _V ) )
2113biimprd 215 . . . . 5  |-  ( F  e.  _V  ->  (
( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x
) H ( F `
 y ) )  =  ( F `  ( x G y ) ) )  ->  F  e.  S )
)
2220, 21syli 35 . . . 4  |-  ( G  e.  GrpOp  ->  ( ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) )  ->  F  e.  S
) )
2315, 22impbid2 196 . . 3  |-  ( G  e.  GrpOp  ->  ( F  e.  S  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
2423adantr 452 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  S  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
253, 24bitrd 245 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2374   A.wral 2650   _Vcvv 2900   ran crn 4820   -->wf 5391   ` cfv 5395  (class class class)co 6021   GrpOpcgr 21623   GrpOpHom cghom 21794
This theorem is referenced by:  elghom  21800
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-ghom 21795
  Copyright terms: Public domain W3C validator