MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgrug Unicode version

Theorem elgrug 8593
Description: Properties of a Grothendieck's universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
elgrug  |-  ( U  e.  V  ->  ( U  e.  Univ  <->  ( Tr  U  /\  A. x  e.  U  ( ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U  /\  A. y  e.  ( U  ^m  x
) U. ran  y  e.  U ) ) ) )
Distinct variable group:    x, U, y
Allowed substitution hints:    V( x, y)

Proof of Theorem elgrug
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 treq 4242 . . 3  |-  ( u  =  U  ->  ( Tr  u  <->  Tr  U )
)
2 eleq2 2441 . . . . 5  |-  ( u  =  U  ->  ( ~P x  e.  u  <->  ~P x  e.  U ) )
3 eleq2 2441 . . . . . 6  |-  ( u  =  U  ->  ( { x ,  y }  e.  u  <->  { x ,  y }  e.  U ) )
43raleqbi1dv 2848 . . . . 5  |-  ( u  =  U  ->  ( A. y  e.  u  { x ,  y }  e.  u  <->  A. y  e.  U  { x ,  y }  e.  U ) )
5 oveq1 6020 . . . . . 6  |-  ( u  =  U  ->  (
u  ^m  x )  =  ( U  ^m  x ) )
6 eleq2 2441 . . . . . 6  |-  ( u  =  U  ->  ( U. ran  y  e.  u  <->  U.
ran  y  e.  U
) )
75, 6raleqbidv 2852 . . . . 5  |-  ( u  =  U  ->  ( A. y  e.  (
u  ^m  x ) U. ran  y  e.  u  <->  A. y  e.  ( U  ^m  x ) U. ran  y  e.  U
) )
82, 4, 73anbi123d 1254 . . . 4  |-  ( u  =  U  ->  (
( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x
) U. ran  y  e.  u )  <->  ( ~P x  e.  U  /\  A. y  e.  U  {
x ,  y }  e.  U  /\  A. y  e.  ( U  ^m  x ) U. ran  y  e.  U )
) )
98raleqbi1dv 2848 . . 3  |-  ( u  =  U  ->  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  <->  A. x  e.  U  ( ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U  /\  A. y  e.  ( U  ^m  x ) U. ran  y  e.  U
) ) )
101, 9anbi12d 692 . 2  |-  ( u  =  U  ->  (
( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
) )  <->  ( Tr  U  /\  A. x  e.  U  ( ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U  /\  A. y  e.  ( U  ^m  x
) U. ran  y  e.  U ) ) ) )
11 df-gru 8592 . 2  |-  Univ  =  { u  |  ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  {
x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )
) }
1210, 11elab2g 3020 1  |-  ( U  e.  V  ->  ( U  e.  Univ  <->  ( Tr  U  /\  A. x  e.  U  ( ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U  /\  A. y  e.  ( U  ^m  x
) U. ran  y  e.  U ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642   ~Pcpw 3735   {cpr 3751   U.cuni 3950   Tr wtr 4236   ran crn 4812  (class class class)co 6013    ^m cmap 6947   Univcgru 8591
This theorem is referenced by:  grutr  8594  grupw  8596  grupr  8598  gruurn  8599  intgru  8615  ingru  8616  grutsk1  8622
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-tr 4237  df-iota 5351  df-fv 5395  df-ov 6016  df-gru 8592
  Copyright terms: Public domain W3C validator