Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhaltdp2 Unicode version

Theorem elhaltdp2 26068
Description: Every line has at least two distinct points. (For my private use only. Don't use.) (Contributed by FL, 28-Apr-2016.)
Hypotheses
Ref Expression
isig.1  |-  P  =  (PPoints `  I )
isig.2  |-  L  =  (PLines `  I )
elhaltdp2.1  |-  ( ph  ->  I  e. Ig )
elhaltdp2.2  |-  ( ph  ->  A  e.  L )
Assertion
Ref Expression
elhaltdp2  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  ( x  =/=  y  /\  x  e.  A  /\  y  e.  A
) )
Distinct variable groups:    x, y, A    x, L, y    x, P, y
Allowed substitution hints:    ph( x, y)    I( x, y)

Proof of Theorem elhaltdp2
Dummy variable  l is distinct from all other variables.
StepHypRef Expression
1 elhaltdp2.2 . 2  |-  ( ph  ->  A  e.  L )
2 isig.1 . . 3  |-  P  =  (PPoints `  I )
3 isig.2 . . 3  |-  L  =  (PLines `  I )
4 elhaltdp2.1 . . 3  |-  ( ph  ->  I  e. Ig )
52, 3, 4elhaltdp 26067 . 2  |-  ( ph  ->  A. l  e.  L  E. x  e.  P  E. y  e.  P  ( x  =/=  y  /\  x  e.  l  /\  y  e.  l
) )
6 eleq2 2344 . . . . 5  |-  ( l  =  A  ->  (
x  e.  l  <->  x  e.  A ) )
7 eleq2 2344 . . . . 5  |-  ( l  =  A  ->  (
y  e.  l  <->  y  e.  A ) )
86, 73anbi23d 1255 . . . 4  |-  ( l  =  A  ->  (
( x  =/=  y  /\  x  e.  l  /\  y  e.  l
)  <->  ( x  =/=  y  /\  x  e.  A  /\  y  e.  A ) ) )
982rexbidv 2586 . . 3  |-  ( l  =  A  ->  ( E. x  e.  P  E. y  e.  P  ( x  =/=  y  /\  x  e.  l  /\  y  e.  l
)  <->  E. x  e.  P  E. y  e.  P  ( x  =/=  y  /\  x  e.  A  /\  y  e.  A
) ) )
109rspcv 2880 . 2  |-  ( A  e.  L  ->  ( A. l  e.  L  E. x  e.  P  E. y  e.  P  ( x  =/=  y  /\  x  e.  l  /\  y  e.  l
)  ->  E. x  e.  P  E. y  e.  P  ( x  =/=  y  /\  x  e.  A  /\  y  e.  A ) ) )
111, 5, 10sylc 56 1  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  ( x  =/=  y  /\  x  e.  A  /\  y  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   ` cfv 5255  PPointscpoints 26056  PLinescplines 26058  Igcig 26060
This theorem is referenced by:  elhalop2  26069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ig2 26061
  Copyright terms: Public domain W3C validator