HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elhmop Structured version   Unicode version

Theorem elhmop 23368
Description: Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elhmop  |-  ( T  e.  HrmOp 
<->  ( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( T `
 x )  .ih  y ) ) )
Distinct variable group:    x, y, T

Proof of Theorem elhmop
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq1 5719 . . . . . 6  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
21oveq2d 6089 . . . . 5  |-  ( t  =  T  ->  (
x  .ih  ( t `  y ) )  =  ( x  .ih  ( T `  y )
) )
3 fveq1 5719 . . . . . 6  |-  ( t  =  T  ->  (
t `  x )  =  ( T `  x ) )
43oveq1d 6088 . . . . 5  |-  ( t  =  T  ->  (
( t `  x
)  .ih  y )  =  ( ( T `
 x )  .ih  y ) )
52, 4eqeq12d 2449 . . . 4  |-  ( t  =  T  ->  (
( x  .ih  (
t `  y )
)  =  ( ( t `  x ) 
.ih  y )  <->  ( x  .ih  ( T `  y
) )  =  ( ( T `  x
)  .ih  y )
) )
652ralbidv 2739 . . 3  |-  ( t  =  T  ->  ( A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( t `  x )  .ih  y
)  <->  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( T `  x )  .ih  y
) ) )
7 df-hmop 23339 . . 3  |-  HrmOp  =  {
t  e.  ( ~H 
^m  ~H )  |  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( t `  y
) )  =  ( ( t `  x
)  .ih  y ) }
86, 7elrab2 3086 . 2  |-  ( T  e.  HrmOp 
<->  ( T  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( T `  x )  .ih  y
) ) )
9 ax-hilex 22494 . . . 4  |-  ~H  e.  _V
109, 9elmap 7034 . . 3  |-  ( T  e.  ( ~H  ^m  ~H )  <->  T : ~H --> ~H )
1110anbi1i 677 . 2  |-  ( ( T  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( T `  x ) 
.ih  y ) )  <-> 
( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( T `
 x )  .ih  y ) ) )
128, 11bitri 241 1  |-  ( T  e.  HrmOp 
<->  ( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( T `
 x )  .ih  y ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   ~Hchil 22414    .ih csp 22417   HrmOpcho 22445
This theorem is referenced by:  hmopf  23369  hmop  23417  hmopadj2  23436  idhmop  23477  0hmop  23478  lnophmi  23513  hmops  23515  hmopm  23516  hmopco  23518  pjhmopi  23641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-hilex 22494
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-map 7012  df-hmop 23339
  Copyright terms: Public domain W3C validator