MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc1 Unicode version

Theorem elicc1 10924
Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elicc1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )

Proof of Theorem elicc1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 10887 . 2  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
21elixx1 10889 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1721   class class class wbr 4180  (class class class)co 6048   RR*cxr 9083    <_ cle 9085   [,]cicc 10883
This theorem is referenced by:  iccid  10925  iccleub  10931  elicc2  10939  elicc4  10941  elxrge0  10972  lbicc2  10977  ubicc2  10978  difreicc  10992  cnblcld  18770  oprpiece1res1  18937  ovolf  19339  volivth  19460  itg2ge0  19588  itg2const2  19594  taylfvallem1  20234  tayl0  20239  radcnvcl  20294  radcnvle  20297  psercnlem1  20302  iccgelb  24097  eliccelico  24101  xrdifh  24104  xrge0neqmnf  24173  unitssxrge0  24259  esumle  24410  esumlef  24415  esumpinfsum  24428  voliune  24546  volfiniune  24547  prob01  24632  ftc1cnnclem  26185  elicc3  26218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-xr 9088  df-icc 10887
  Copyright terms: Public domain W3C validator