Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc1 Structured version   Unicode version

Theorem elicc1 10960
 Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elicc1

Proof of Theorem elicc1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 10923 . 2
21elixx1 10925 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   w3a 936   wcel 1725   class class class wbr 4212  (class class class)co 6081  cxr 9119   cle 9121  cicc 10919 This theorem is referenced by:  iccid  10961  iccleub  10967  elicc2  10975  elicc4  10977  elxrge0  11008  lbicc2  11013  ubicc2  11014  difreicc  11028  cnblcld  18809  oprpiece1res1  18976  ovolf  19378  volivth  19499  itg2ge0  19627  itg2const2  19633  taylfvallem1  20273  tayl0  20278  radcnvcl  20333  radcnvle  20336  psercnlem1  20341  iccgelb  24136  eliccelico  24140  xrdifh  24143  xrge0neqmnf  24212  unitssxrge0  24298  esumle  24449  esumlef  24454  esumpinfsum  24467  voliune  24585  volfiniune  24586  prob01  24671  ftc1cnnclem  26278  ftc1anc  26288  ftc2nc  26289  elicc3  26320 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-xr 9124  df-icc 10923
 Copyright terms: Public domain W3C validator