MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2 Unicode version

Theorem elicc2 10939
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 9094 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 9094 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
3 elicc1 10924 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
41, 2, 3syl2an 464 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
5 mnfxr 10678 . . . . . . . 8  |-  -oo  e.  RR*
65a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  e.  RR* )
71ad2antrr 707 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  e.  RR* )
8 simpr1 963 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR* )
9 mnflt 10686 . . . . . . . 8  |-  ( A  e.  RR  ->  -oo  <  A )
109ad2antrr 707 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  <  A )
11 simpr2 964 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  <_  C )
126, 7, 8, 10, 11xrltletrd 10715 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  <  C )
132ad2antlr 708 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  e.  RR* )
14 pnfxr 10677 . . . . . . . 8  |-  +oo  e.  RR*
1514a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  +oo  e.  RR* )
16 simpr3 965 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  <_  B )
17 ltpnf 10685 . . . . . . . 8  |-  ( B  e.  RR  ->  B  <  +oo )
1817ad2antlr 708 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  <  +oo )
198, 13, 15, 16, 18xrlelttrd 10714 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  <  +oo )
20 xrrebnd 10720 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  (  -oo  <  C  /\  C  <  +oo ) ) )
218, 20syl 16 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  <->  (  -oo  <  C  /\  C  <  +oo ) ) )
2212, 19, 21mpbir2and 889 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR )
2322, 11, 163jca 1134 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) )
2423ex 424 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
25 rexr 9094 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
26253anim1i 1140 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )
2724, 26impbid1 195 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
284, 27bitrd 245 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1721   class class class wbr 4180  (class class class)co 6048   RRcr 8953    +oocpnf 9081    -oocmnf 9082   RR*cxr 9083    < clt 9084    <_ cle 9085   [,]cicc 10883
This theorem is referenced by:  elicc2i  10940  iccssre  10956  iccsupr  10961  iccneg  10982  iccsplit  10993  iccshftr  10994  iccshftl  10996  iccdil  10998  icccntr  11000  iccf1o  11003  icco1  12297  iccntr  18813  icccmplem1  18814  icccmplem2  18815  icccmplem3  18816  reconnlem1  18818  reconnlem2  18819  cnmpt2pc  18914  icoopnst  18925  iocopnst  18926  cnheiborlem  18940  ivthlem2  19310  ivthlem3  19311  ivthicc  19316  evthicc2  19318  ovolficc  19326  ovolicc1  19373  ovolicc2lem2  19375  ovolicc2lem5  19378  ovolicopnf  19381  dyadmaxlem  19450  opnmbllem  19454  volsup2  19458  volcn  19459  mbfi1fseqlem6  19573  itgspliticc  19689  itgsplitioo  19690  ditgcl  19706  ditgswap  19707  ditgsplitlem  19708  ditgsplit  19709  dvlip  19838  dvlip2  19840  dveq0  19845  dvgt0lem1  19847  dvivthlem1  19853  dvne0  19856  dvcnvrelem1  19862  dvcnvrelem2  19863  dvcnvre  19864  dvfsumlem2  19872  ftc1lem1  19880  ftc1lem2  19881  ftc1a  19882  ftc1lem4  19884  ftc2  19889  ftc2ditglem  19890  itgsubstlem  19893  pserulm  20299  loglesqr  20603  log2tlbnd  20746  ppisval  20847  chtleppi  20955  fsumvma2  20959  chpchtsum  20964  chpub  20965  rplogsumlem2  21140  chpdifbndlem1  21208  pntibndlem2a  21245  pntibndlem2  21246  pntlemj  21258  pntlem3  21264  pntleml  21266  rescon  24894  cvmliftlem10  24942  mblfinlem  26151  areacirclem4  26191  areacirclem5  26193  areacirc  26195  isbnd3  26391  isbnd3b  26392  prdsbnd  26400  iccbnd  26447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-pre-lttri 9028  ax-pre-lttrn 9029
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-po 4471  df-so 4472  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-icc 10887
  Copyright terms: Public domain W3C validator