MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2 Unicode version

Theorem elicc2 10715
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 8877 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 8877 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
3 elicc1 10700 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
41, 2, 3syl2an 463 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
5 mnfxr 10456 . . . . . . . 8  |-  -oo  e.  RR*
65a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  e.  RR* )
71ad2antrr 706 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  e.  RR* )
8 simpr1 961 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR* )
9 mnflt 10464 . . . . . . . 8  |-  ( A  e.  RR  ->  -oo  <  A )
109ad2antrr 706 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  <  A )
11 simpr2 962 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  <_  C )
126, 7, 8, 10, 11xrltletrd 10492 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  <  C )
132ad2antlr 707 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  e.  RR* )
14 pnfxr 10455 . . . . . . . 8  |-  +oo  e.  RR*
1514a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  +oo  e.  RR* )
16 simpr3 963 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  <_  B )
17 ltpnf 10463 . . . . . . . 8  |-  ( B  e.  RR  ->  B  <  +oo )
1817ad2antlr 707 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  <  +oo )
198, 13, 15, 16, 18xrlelttrd 10491 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  <  +oo )
20 xrrebnd 10497 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  (  -oo  <  C  /\  C  <  +oo ) ) )
218, 20syl 15 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  <->  (  -oo  <  C  /\  C  <  +oo ) ) )
2212, 19, 21mpbir2and 888 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR )
2322, 11, 163jca 1132 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) )
2423ex 423 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
25 rexr 8877 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
26253anim1i 1138 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )
2724, 26impbid1 194 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
284, 27bitrd 244 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   RRcr 8736    +oocpnf 8864    -oocmnf 8865   RR*cxr 8866    < clt 8867    <_ cle 8868   [,]cicc 10659
This theorem is referenced by:  elicc2i  10716  iccssre  10731  iccsupr  10736  iccneg  10757  iccsplit  10768  iccshftr  10769  iccshftl  10771  iccdil  10773  icccntr  10775  iccf1o  10778  icco1  12014  iccntr  18326  icccmplem1  18327  icccmplem2  18328  icccmplem3  18329  reconnlem1  18331  reconnlem2  18332  cnmpt2pc  18426  icoopnst  18437  iocopnst  18438  cnheiborlem  18452  ivthlem2  18812  ivthlem3  18813  ivthicc  18818  evthicc2  18820  ovolficc  18828  ovolicc1  18875  ovolicc2lem2  18877  ovolicc2lem5  18880  ovolicopnf  18883  dyadmaxlem  18952  opnmbllem  18956  volsup2  18960  volcn  18961  mbfi1fseqlem6  19075  itgspliticc  19191  itgsplitioo  19192  ditgcl  19208  ditgswap  19209  ditgsplitlem  19210  ditgsplit  19211  dvlip  19340  dvlip2  19342  dveq0  19347  dvgt0lem1  19349  dvivthlem1  19355  dvne0  19358  dvcnvrelem1  19364  dvcnvrelem2  19365  dvcnvre  19366  dvfsumlem2  19374  ftc1lem1  19382  ftc1lem2  19383  ftc1a  19384  ftc1lem4  19386  ftc2  19391  ftc2ditglem  19392  itgsubstlem  19395  pserulm  19798  loglesqr  20098  log2tlbnd  20241  ppisval  20341  chtleppi  20449  fsumvma2  20453  chpchtsum  20458  chpub  20459  rplogsumlem2  20634  chpdifbndlem1  20702  pntibndlem2a  20739  pntibndlem2  20740  pntlemj  20752  pntlem3  20758  pntleml  20760  elunitrn  23281  elunitge0  23283  unitdivcld  23285  xrge0iifhom  23319  rescon  23777  cvmliftlem10  23825  areacirclem4  24927  areacirclem5  24929  areacirc  24931  icccon2  25700  icccon3  25701  icccon4  25702  isbnd3  26508  isbnd3b  26509  prdsbnd  26517  iccbnd  26564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-icc 10663
  Copyright terms: Public domain W3C validator