Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicc3 Unicode version

Theorem elicc3 25552
Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
elicc3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )

Proof of Theorem elicc3
StepHypRef Expression
1 elicc1 10789 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
2 simp1 955 . . . . 5  |-  ( ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  C  e.  RR* )
32a1i 10 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  C  e.  RR* ) )
4 xrletr 10578 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  C  /\  C  <_  B )  ->  A  <_  B
) )
54exp5o 1170 . . . . . 6  |-  ( A  e.  RR*  ->  ( C  e.  RR*  ->  ( B  e.  RR*  ->  ( A  <_  C  ->  ( C  <_  B  ->  A  <_  B ) ) ) ) )
65com23 72 . . . . 5  |-  ( A  e.  RR*  ->  ( B  e.  RR*  ->  ( C  e.  RR*  ->  ( A  <_  C  ->  ( C  <_  B  ->  A  <_  B ) ) ) ) )
76imp5q 25545 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  A  <_  B ) )
8 df-ne 2523 . . . . . . . . . 10  |-  ( C  =/=  A  <->  -.  C  =  A )
9 xrleltne 10568 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( A  <  C  <->  C  =/=  A ) )
109biimprd 214 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( C  =/=  A  ->  A  <  C ) )
118, 10syl5bir 209 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( -.  C  =  A  ->  A  <  C ) )
12113adant3r3 1162 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  -> 
( -.  C  =  A  ->  A  <  C ) )
1312adantlr 695 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( -.  C  =  A  ->  A  < 
C ) )
14 eqcom 2360 . . . . . . . . . . . . . 14  |-  ( C  =  B  <->  B  =  C )
1514necon3bbii 2552 . . . . . . . . . . . . 13  |-  ( -.  C  =  B  <->  B  =/=  C )
16 xrleltne 10568 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( C  <  B  <->  B  =/=  C ) )
1716biimprd 214 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( B  =/=  C  ->  C  <  B ) )
1815, 17syl5bi 208 . . . . . . . . . . . 12  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( -.  C  =  B  ->  C  <  B ) )
19183exp 1150 . . . . . . . . . . 11  |-  ( C  e.  RR*  ->  ( B  e.  RR*  ->  ( C  <_  B  ->  ( -.  C  =  B  ->  C  <  B ) ) ) )
2019com12 27 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  ( C  e.  RR*  ->  ( C  <_  B  ->  ( -.  C  =  B  ->  C  <  B ) ) ) )
2120imp32 422 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  ( C  e.  RR*  /\  C  <_  B ) )  -> 
( -.  C  =  B  ->  C  <  B ) )
22213adantr2 1115 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  -> 
( -.  C  =  B  ->  C  <  B ) )
2322adantll 694 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( -.  C  =  B  ->  C  < 
B ) )
2413, 23anim12d 546 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( ( -.  C  =  A  /\  -.  C  =  B
)  ->  ( A  <  C  /\  C  < 
B ) ) )
2524ex 423 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) ) ) )
26 df-or 359 . . . . . 6  |-  ( ( C  =  A  \/  ( ( A  < 
C  /\  C  <  B )  \/  C  =  B ) )  <->  ( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
27 3orass 937 . . . . . 6  |-  ( ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B )  <-> 
( C  =  A  \/  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
28 pm5.6 878 . . . . . . 7  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( -.  C  =  A  ->  ( C  =  B  \/  ( A  <  C  /\  C  <  B ) ) ) )
29 orcom 376 . . . . . . . 8  |-  ( ( C  =  B  \/  ( A  <  C  /\  C  <  B ) )  <-> 
( ( A  < 
C  /\  C  <  B )  \/  C  =  B ) )
3029imbi2i 303 . . . . . . 7  |-  ( ( -.  C  =  A  ->  ( C  =  B  \/  ( A  <  C  /\  C  <  B ) ) )  <-> 
( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
3128, 30bitri 240 . . . . . 6  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
3226, 27, 313bitr4ri 269 . . . . 5  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )
3325, 32syl6ib 217 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B ) ) )
343, 7, 333jcad 1133 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
35 simp1 955 . . . . 5  |-  ( ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  e.  RR* )
3635a1i 10 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  e.  RR* ) )
37 xrleid 10573 . . . . . . . . 9  |-  ( A  e.  RR*  ->  A  <_  A )
3837ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  A  <_  A )
39 breq2 4106 . . . . . . . 8  |-  ( C  =  A  ->  ( A  <_  C  <->  A  <_  A ) )
4038, 39syl5ibrcom 213 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  A  ->  A  <_  C ) )
41 xrltle 10572 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  C  ->  A  <_  C ) )
4241adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  < 
C  ->  A  <_  C ) )
4342adantllr 699 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( A  <  C  ->  A  <_  C ) )
4443adantrd 454 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( A  <  C  /\  C  <  B )  ->  A  <_  C
) )
45 simpr 447 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  A  <_  B )
46 breq2 4106 . . . . . . . 8  |-  ( C  =  B  ->  ( A  <_  C  <->  A  <_  B ) )
4745, 46syl5ibrcom 213 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  B  ->  A  <_  C ) )
4840, 44, 473jaod 1246 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  A  <_  C ) )
4948exp31 587 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  RR*  ->  ( A  <_  B  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  A  <_  C ) ) ) )
50493impd 1165 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  A  <_  C ) )
51 breq1 4105 . . . . . . . 8  |-  ( C  =  A  ->  ( C  <_  B  <->  A  <_  B ) )
5245, 51syl5ibrcom 213 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  A  ->  C  <_  B ) )
53 xrltle 10572 . . . . . . . . . . 11  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C  <  B  ->  C  <_  B ) )
5453ancoms 439 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( C  <  B  ->  C  <_  B ) )
5554adantld 453 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
( A  <  C  /\  C  <  B )  ->  C  <_  B
) )
5655adantll 694 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR* )  ->  ( ( A  < 
C  /\  C  <  B )  ->  C  <_  B ) )
5756adantr 451 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( A  <  C  /\  C  <  B )  ->  C  <_  B
) )
58 xrleid 10573 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  B  <_  B )
5958ad2antlr 707 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR* )  ->  B  <_  B )
6059adantr 451 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  B  <_  B )
61 breq1 4105 . . . . . . . 8  |-  ( C  =  B  ->  ( C  <_  B  <->  B  <_  B ) )
6260, 61syl5ibrcom 213 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  B  ->  C  <_  B ) )
6352, 57, 623jaod 1246 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  C  <_  B ) )
6463exp31 587 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  RR*  ->  ( A  <_  B  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  C  <_  B ) ) ) )
65643impd 1165 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  <_  B ) )
6636, 50, 653jcad 1133 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
6734, 66impbid 183 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
681, 67bitrd 244 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4102  (class class class)co 5942   RR*cxr 8953    < clt 8954    <_ cle 8955   [,]cicc 10748
This theorem is referenced by:  ivthALT  25582
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-pre-lttri 8898  ax-pre-lttrn 8899
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-po 4393  df-so 4394  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-icc 10752
  Copyright terms: Public domain W3C validator