Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicc3 Structured version   Unicode version

Theorem elicc3 26320
Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
elicc3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )

Proof of Theorem elicc3
StepHypRef Expression
1 elicc1 10960 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
2 simp1 957 . . . . 5  |-  ( ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  C  e.  RR* )
32a1i 11 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  C  e.  RR* ) )
4 xrletr 10748 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  C  /\  C  <_  B )  ->  A  <_  B
) )
54exp5o 1172 . . . . . 6  |-  ( A  e.  RR*  ->  ( C  e.  RR*  ->  ( B  e.  RR*  ->  ( A  <_  C  ->  ( C  <_  B  ->  A  <_  B ) ) ) ) )
65com23 74 . . . . 5  |-  ( A  e.  RR*  ->  ( B  e.  RR*  ->  ( C  e.  RR*  ->  ( A  <_  C  ->  ( C  <_  B  ->  A  <_  B ) ) ) ) )
76imp5q 26315 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  A  <_  B ) )
8 df-ne 2601 . . . . . . . . . 10  |-  ( C  =/=  A  <->  -.  C  =  A )
9 xrleltne 10738 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( A  <  C  <->  C  =/=  A ) )
109biimprd 215 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( C  =/=  A  ->  A  <  C ) )
118, 10syl5bir 210 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( -.  C  =  A  ->  A  <  C ) )
12113adant3r3 1164 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  -> 
( -.  C  =  A  ->  A  <  C ) )
1312adantlr 696 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( -.  C  =  A  ->  A  < 
C ) )
14 eqcom 2438 . . . . . . . . . . . . . 14  |-  ( C  =  B  <->  B  =  C )
1514necon3bbii 2632 . . . . . . . . . . . . 13  |-  ( -.  C  =  B  <->  B  =/=  C )
16 xrleltne 10738 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( C  <  B  <->  B  =/=  C ) )
1716biimprd 215 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( B  =/=  C  ->  C  <  B ) )
1815, 17syl5bi 209 . . . . . . . . . . . 12  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( -.  C  =  B  ->  C  <  B ) )
19183exp 1152 . . . . . . . . . . 11  |-  ( C  e.  RR*  ->  ( B  e.  RR*  ->  ( C  <_  B  ->  ( -.  C  =  B  ->  C  <  B ) ) ) )
2019com12 29 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  ( C  e.  RR*  ->  ( C  <_  B  ->  ( -.  C  =  B  ->  C  <  B ) ) ) )
2120imp32 423 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  ( C  e.  RR*  /\  C  <_  B ) )  -> 
( -.  C  =  B  ->  C  <  B ) )
22213adantr2 1117 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  -> 
( -.  C  =  B  ->  C  <  B ) )
2322adantll 695 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( -.  C  =  B  ->  C  < 
B ) )
2413, 23anim12d 547 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( ( -.  C  =  A  /\  -.  C  =  B
)  ->  ( A  <  C  /\  C  < 
B ) ) )
2524ex 424 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) ) ) )
26 df-or 360 . . . . . 6  |-  ( ( C  =  A  \/  ( ( A  < 
C  /\  C  <  B )  \/  C  =  B ) )  <->  ( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
27 3orass 939 . . . . . 6  |-  ( ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B )  <-> 
( C  =  A  \/  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
28 pm5.6 879 . . . . . . 7  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( -.  C  =  A  ->  ( C  =  B  \/  ( A  <  C  /\  C  <  B ) ) ) )
29 orcom 377 . . . . . . . 8  |-  ( ( C  =  B  \/  ( A  <  C  /\  C  <  B ) )  <-> 
( ( A  < 
C  /\  C  <  B )  \/  C  =  B ) )
3029imbi2i 304 . . . . . . 7  |-  ( ( -.  C  =  A  ->  ( C  =  B  \/  ( A  <  C  /\  C  <  B ) ) )  <-> 
( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
3128, 30bitri 241 . . . . . 6  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
3226, 27, 313bitr4ri 270 . . . . 5  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )
3325, 32syl6ib 218 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B ) ) )
343, 7, 333jcad 1135 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
35 simp1 957 . . . . 5  |-  ( ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  e.  RR* )
3635a1i 11 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  e.  RR* ) )
37 xrleid 10743 . . . . . . . . 9  |-  ( A  e.  RR*  ->  A  <_  A )
3837ad3antrrr 711 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  A  <_  A )
39 breq2 4216 . . . . . . . 8  |-  ( C  =  A  ->  ( A  <_  C  <->  A  <_  A ) )
4038, 39syl5ibrcom 214 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  A  ->  A  <_  C ) )
41 xrltle 10742 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  C  ->  A  <_  C ) )
4241adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  < 
C  ->  A  <_  C ) )
4342adantllr 700 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( A  <  C  ->  A  <_  C ) )
4443adantrd 455 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( A  <  C  /\  C  <  B )  ->  A  <_  C
) )
45 simpr 448 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  A  <_  B )
46 breq2 4216 . . . . . . . 8  |-  ( C  =  B  ->  ( A  <_  C  <->  A  <_  B ) )
4745, 46syl5ibrcom 214 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  B  ->  A  <_  C ) )
4840, 44, 473jaod 1248 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  A  <_  C ) )
4948exp31 588 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  RR*  ->  ( A  <_  B  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  A  <_  C ) ) ) )
50493impd 1167 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  A  <_  C ) )
51 breq1 4215 . . . . . . . 8  |-  ( C  =  A  ->  ( C  <_  B  <->  A  <_  B ) )
5245, 51syl5ibrcom 214 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  A  ->  C  <_  B ) )
53 xrltle 10742 . . . . . . . . . . 11  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C  <  B  ->  C  <_  B ) )
5453ancoms 440 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( C  <  B  ->  C  <_  B ) )
5554adantld 454 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
( A  <  C  /\  C  <  B )  ->  C  <_  B
) )
5655adantll 695 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR* )  ->  ( ( A  < 
C  /\  C  <  B )  ->  C  <_  B ) )
5756adantr 452 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( A  <  C  /\  C  <  B )  ->  C  <_  B
) )
58 xrleid 10743 . . . . . . . . 9  |-  ( B  e.  RR*  ->  B  <_  B )
5958ad3antlr 712 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  B  <_  B )
60 breq1 4215 . . . . . . . 8  |-  ( C  =  B  ->  ( C  <_  B  <->  B  <_  B ) )
6159, 60syl5ibrcom 214 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  B  ->  C  <_  B ) )
6252, 57, 613jaod 1248 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  C  <_  B ) )
6362exp31 588 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  RR*  ->  ( A  <_  B  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  C  <_  B ) ) ) )
64633impd 1167 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  <_  B ) )
6536, 50, 643jcad 1135 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
6634, 65impbid 184 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
671, 66bitrd 245 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4212  (class class class)co 6081   RR*cxr 9119    < clt 9120    <_ cle 9121   [,]cicc 10919
This theorem is referenced by:  ivthALT  26338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-pre-lttri 9064  ax-pre-lttrn 9065
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-icc 10923
  Copyright terms: Public domain W3C validator