MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc4 Unicode version

Theorem elicc4 10733
Description: Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
elicc4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  ( A [,] B )  <->  ( A  <_  C  /\  C  <_  B ) ) )

Proof of Theorem elicc4
StepHypRef Expression
1 elicc1 10716 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
2 3anass 938 . . . 4  |-  ( ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  <->  ( C  e.  RR*  /\  ( A  <_  C  /\  C  <_  B ) ) )
31, 2syl6bb 252 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  ( A  <_  C  /\  C  <_  B ) ) ) )
43baibd 875 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR* )  ->  ( C  e.  ( A [,] B )  <-> 
( A  <_  C  /\  C  <_  B ) ) )
543impa 1146 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  ( A [,] B )  <->  ( A  <_  C  /\  C  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RR*cxr 8882    <_ cle 8884   [,]cicc 10675
This theorem is referenced by:  elicc4abs  11819  xrge0addass  23344  esumle  23448  esumlef  23450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-xr 8887  df-icc 10679
  Copyright terms: Public domain W3C validator