MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico1 Unicode version

Theorem elico1 10746
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elico1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B
) ) )

Proof of Theorem elico1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 10709 . 2  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21elixx1 10712 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1701   class class class wbr 4060  (class class class)co 5900   RR*cxr 8911    < clt 8912    <_ cle 8913   [,)cico 10705
This theorem is referenced by:  lbico1  10753  elico2  10761  icodisj  10808  leordtvallem2  16997  pnfnei  17006  mnfnei  17007  iscfil2  18745  eliccelico  23287  elicoelioo  23288  xrdifh  23290  fsumrp0cl  23355  xrge0iifcnv  23388  metustexhalf  23498  blval2  23506  esumpcvgval  23644  rfcnpre3  26852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-iota 5256  df-fun 5294  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-xr 8916  df-ico 10709
  Copyright terms: Public domain W3C validator