MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elif Structured version   Unicode version

Theorem elif 3765
Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
elif  |-  ( A  e.  if ( ph ,  B ,  C )  <-> 
( ( ph  /\  A  e.  B )  \/  ( -.  ph  /\  A  e.  C )
) )

Proof of Theorem elif
StepHypRef Expression
1 eleq2 2496 . 2  |-  ( if ( ph ,  B ,  C )  =  B  ->  ( A  e.  if ( ph ,  B ,  C )  <->  A  e.  B ) )
2 eleq2 2496 . 2  |-  ( if ( ph ,  B ,  C )  =  C  ->  ( A  e.  if ( ph ,  B ,  C )  <->  A  e.  C ) )
31, 2elimif 3760 1  |-  ( A  e.  if ( ph ,  B ,  C )  <-> 
( ( ph  /\  A  e.  B )  \/  ( -.  ph  /\  A  e.  C )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359    e. wcel 1725   ifcif 3731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-if 3732
  Copyright terms: Public domain W3C validator