MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima Unicode version

Theorem elima 5017
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
Hypothesis
Ref Expression
elima.1  |-  A  e. 
_V
Assertion
Ref Expression
elima  |-  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem elima
StepHypRef Expression
1 elima.1 . 2  |-  A  e. 
_V
2 elimag 5016 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
31, 2ax-mp 8 1  |-  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    e. wcel 1684   E.wrex 2544   _Vcvv 2788   class class class wbr 4023   "cima 4692
This theorem is referenced by:  elima2  5018  rninxp  5117  imaco  5178  isarep1  5331  funimass4  5573  isomin  5834  dfsup2  7195  dfsup2OLD  7196  dfac10b  7765  hausmapdom  17226  pi1blem  18537  adjbd1o  22665  brimage  24465  brimg  24476  dfrdg4  24488  tfrqfree  24489  prj1b  25079  prj3  25080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator