Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima Structured version   Unicode version

Theorem elima 5211
 Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
Hypothesis
Ref Expression
elima.1
Assertion
Ref Expression
elima
Distinct variable groups:   ,   ,   ,

Proof of Theorem elima
StepHypRef Expression
1 elima.1 . 2
2 elimag 5210 . 2
31, 2ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wb 178   wcel 1726  wrex 2708  cvv 2958   class class class wbr 4215  cima 4884 This theorem is referenced by:  elima2  5212  rninxp  5313  imaco  5378  isarep1  5535  funimass4  5780  isomin  6060  dfsup2  7450  dfsup2OLD  7451  dfac10b  8024  hausmapdom  17568  pi1blem  19069  adjbd1o  23593  brimage  25776  dfrdg4  25800  tfrqfree  25801  dfint3  25802  imagesset  25803 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-xp 4887  df-cnv 4889  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894
 Copyright terms: Public domain W3C validator