MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima Unicode version

Theorem elima 5175
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
Hypothesis
Ref Expression
elima.1  |-  A  e. 
_V
Assertion
Ref Expression
elima  |-  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem elima
StepHypRef Expression
1 elima.1 . 2  |-  A  e. 
_V
2 elimag 5174 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
31, 2ax-mp 8 1  |-  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1721   E.wrex 2675   _Vcvv 2924   class class class wbr 4180   "cima 4848
This theorem is referenced by:  elima2  5176  rninxp  5277  imaco  5342  isarep1  5499  funimass4  5744  isomin  6024  dfsup2  7413  dfsup2OLD  7414  dfac10b  7983  hausmapdom  17524  pi1blem  19025  adjbd1o  23549  brimage  25687  brimg  25698  dfrdg4  25711  tfrqfree  25712
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-xp 4851  df-cnv 4853  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858
  Copyright terms: Public domain W3C validator