MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasn Unicode version

Theorem elimasn 5038
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
elimasn.1  |-  B  e. 
_V
elimasn.2  |-  C  e. 
_V
Assertion
Ref Expression
elimasn  |-  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A )

Proof of Theorem elimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elimasn.2 . . 3  |-  C  e. 
_V
2 breq2 4027 . . 3  |-  ( x  =  C  ->  ( B A x  <->  B A C ) )
3 elimasn.1 . . . 4  |-  B  e. 
_V
4 imasng 5035 . . . 4  |-  ( B  e.  _V  ->  ( A " { B }
)  =  { x  |  B A x }
)
53, 4ax-mp 8 . . 3  |-  ( A
" { B }
)  =  { x  |  B A x }
61, 2, 5elab2 2917 . 2  |-  ( C  e.  ( A " { B } )  <->  B A C )
7 df-br 4024 . 2  |-  ( B A C  <->  <. B ,  C >.  e.  A )
86, 7bitri 240 1  |-  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788   {csn 3640   <.cop 3643   class class class wbr 4023   "cima 4692
This theorem is referenced by:  elimasng  5039  dfco2  5172  dfco2a  5173  ressn  5211  funfvima3  5755  frxp  6225  marypha1lem  7186  gsum2d  15223  gsum2d2  15225  ovoliunlem1  18861  funpartfun  24481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator