MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasn Unicode version

Theorem elimasn 5162
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
elimasn.1  |-  B  e. 
_V
elimasn.2  |-  C  e. 
_V
Assertion
Ref Expression
elimasn  |-  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A )

Proof of Theorem elimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elimasn.2 . . 3  |-  C  e. 
_V
2 breq2 4150 . . 3  |-  ( x  =  C  ->  ( B A x  <->  B A C ) )
3 elimasn.1 . . . 4  |-  B  e. 
_V
4 imasng 5159 . . . 4  |-  ( B  e.  _V  ->  ( A " { B }
)  =  { x  |  B A x }
)
53, 4ax-mp 8 . . 3  |-  ( A
" { B }
)  =  { x  |  B A x }
61, 2, 5elab2 3021 . 2  |-  ( C  e.  ( A " { B } )  <->  B A C )
7 df-br 4147 . 2  |-  ( B A C  <->  <. B ,  C >.  e.  A )
86, 7bitri 241 1  |-  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649    e. wcel 1717   {cab 2366   _Vcvv 2892   {csn 3750   <.cop 3753   class class class wbr 4146   "cima 4814
This theorem is referenced by:  elimasng  5163  dfco2  5302  dfco2a  5303  ressn  5341  funfvima3  5907  frxp  6385  marypha1lem  7366  gsum2d  15466  gsum2d2  15468  ovoliunlem1  19258  funpartfun  25499
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-br 4147  df-opab 4201  df-xp 4817  df-cnv 4819  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824
  Copyright terms: Public domain W3C validator